TOMORROW starts here.

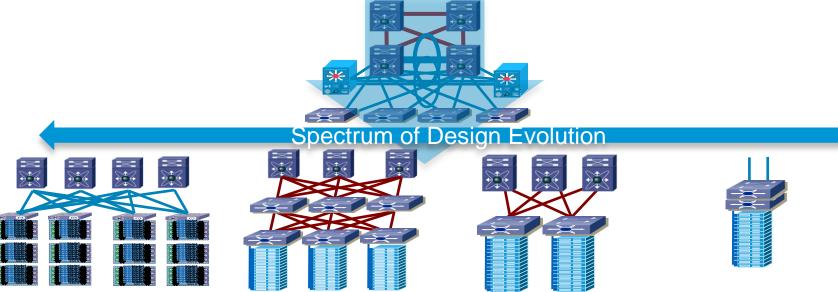
11 11 11 CISCO

Cisco Nexus 3548 Switch Architecture

BRKARC-2013

V1.6

Lucien Avramov


Technical Marketing Engineer

Data Center Group – Business Unit [Nexus]

lucien@cisco.com

Four Data Center Architecture Trends

Virtualized Data Center

- **SP** and Enterprise
- **Hypervisor Virtualization**
- Shared infrastructure Heterogenous
- 1G Edge moving to 10G
- Nexus 1000v, 2000, 5500, 7000 & UCS_{BRKARC-2013}

- Warehouse Scale
- Layer 3 Edge (iBGP, ISIS)
- 1000's of racks
- Homogeneous Environment
- No Hypervisor virtualization
- 1G edge moving to 10G
- Nexus 2000, 3000, 5500, 7000 & 10G moving to 40G UCS

© 2013 Cisco and/or its affiliates. All rights reserved.

- **HPC/GRID**
- Layer 3 & Layer 2
- No Virtualization
- iWARP & RCoE
- Nexus 2000, 3000, 5500, 7000 & UCS

High Frequency Trading

- Layer 3 & Multicast
- No Virtualization
- **Limited Physical Scale**
- Nexus 3000 & UCS
- 10G edge moving to 40G

Cisco Public

Cisco Nexus 3548 Switch Architecture

BRKARC-2013

V1.6

Lucien Avramov

Technical Marketing Engineer

Data Center Group – Business Unit [Nexus]

lucien@cisco.com

Provide a framework and context around understanding 3548

Understand how to measure performance at nanosecond

Understand the Nexus 3548 architecture and benefits

Look into design examples

Agenda – Nexus 3548 – BRKARC-2013

- Benchmarking
- Architecture
- Designs

Agenda – Nexus 3548 – BRKARC-2013

Benchmarking Line Rate

Architecture

Designs

ThroughputLatency

Jitter

Benchmarking

Benchmarking: What is line rate

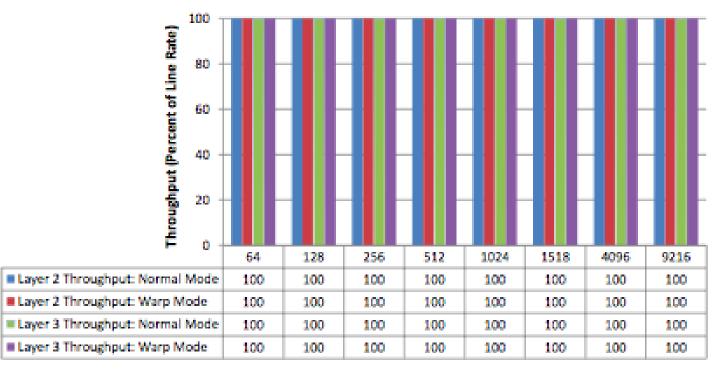
"Line Rate" CAN be measured in terms of "Frame Rate":

Frame Rate FR = Transmit-Clock-Frequency / (Frame-Length*8 + Minimum_Gap + Preamble + Start-Frame Delimiter)

Example for 1 GB Ethernet speed with 64-byte frames:

- FR= 1,000,000,000 /(64*8 + 96 + 56 + 8)
- FR= 1,000,000,000 / 672
- FR= 1,488,095.2 Frames per Second.

Benchmarking: How to measure linerate


Traffic generator sending traffic is required

- In a production network, it is very unlikely to see precise line rate over a very brief period.
- There is no observable difference between dropping packets at 99% of line rate and 100% of line rate

Line rate CAN measured at 100% of line rate with a -100PPM adjustment. Line rate SHOULD be measured at 99,98% with 0 PPM adjustment.

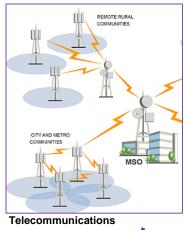
Benchmarking Nexus 3548 10GE Throughput – L2 and L3 - RFC 2544

Packet Size (Bytes)

Spirent third party performance report for Nexus 3548

© 2013 Cisco and/or its affiliates. All rights reserved.

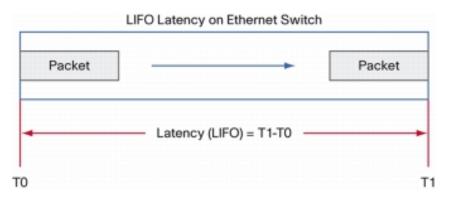
What is Latency?


 Definition of latency: delay introduced in the communication between the time sender initiates it and the receiver receives and processes the information.

- Example: Voice Over IP, Radar, Satellite Communication, Real time application
- Different requirements / different user experience
 - Example of market data (user experience vs. machine trading..)
 - Telecommunication

Ultra Low Latency : sub 1 usec

Financial trading

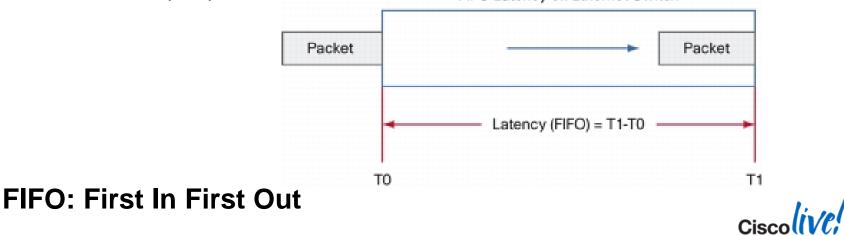


© 2013 Cisco and/or its affiliates. All rights reserved.

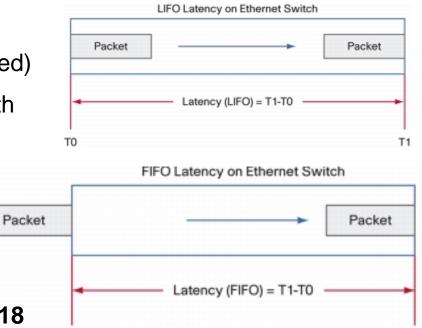
Benchmarking: Latency

- From RFC 1242:
- For store and forward devices:

The time interval starting when the last bit of the input frame reaches the input port and ending when the first bit of the output frame is seen on the output port.



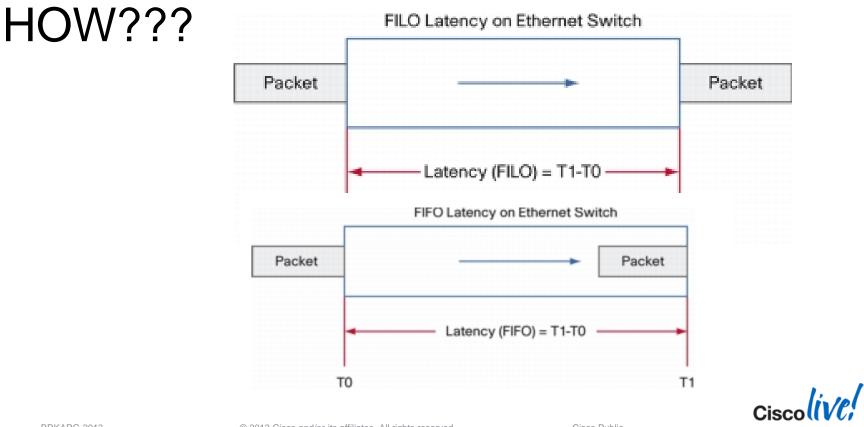
Benchmarking: Latency


- From RFC 1242:
- For bit forwarding devices (cut-through devices):

The time interval starting when the end of the first bit of the input frame reaches the input port and ending when the start of the first bit of the output frame is seen on the output port FIFO Latency on Ethernet Switch

Benchmarking: Latency

- Measurement method: LIFO or FIFO?
- LIFO = FIFO (Packet size in bits/Link speed)
- Cable length: identical cable type and length
- Identical amount of ports to test
- Identical testing equipment:
 - Chassis
 - Testing cards
 - Software Revision
- Typical Latency tests: RFC 2544, 2889, 3918


TO

Benchmarking: Latency Comparison

HOW???

Benchmarking: Latency Comparison

Benchmarking: Latency Comparison

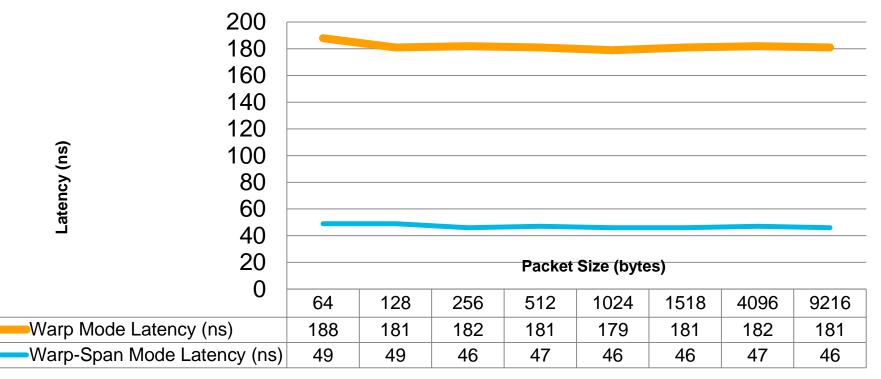
HOW???

The measuring methods to use for benchmarking purposes are as follow:

1) FILO **MUST** be used as a measuring method, as this will include the latency of the packet; and today the application commonly need to read the whole packet to process the information and take an action.

2) FIFO MAY be used for certain applications able to proceed data as the first bits arrive (FPGA for example)

3) LIFO MUST not be used, because it subtracts the latency of the packet; unlike all the other methods.


Benchmarking: Jitter

IP Packet Delay Variation is commonly known as Jitter

- The jitter MUST be measured when sending packets of the same size.
- Jitter MUST be measured as packet to packet delay variation and delta between min and max packet delay variation of all packets sent.
- A histogram MAY be provided as a population of packets measured per latency or latency buckets.

Benchmarking Nexus 3548 10GE Latency and Jitter – L2 and L3 - RFC 2544

Spirent third party performance report for Nexus 3548

The MAX Latency value for 3548 and 3064 switches

	Control Protocols Running	MAX Latency (nsec)	AVG Latency (nsec)	MIN latency (nsec)
	Default Enabled: LLDP/CDP/STP	~500	~250	~220
Nexus 3548 Layer 2 test	Disabled: LLDP/CDP Enabled: STP	~340	~250	~220
	Disabled: LLDP/CDP/STP	~280	~250	~220
	Default Enabled: LLDP/CDP/STP	~1120	~840	~800
Nexus 3064 Layer 2 Test (64 B)	Disabled: LLDP/CDP Enabled: STP	~920	~840	~800
	Disabled: LLDP/CDP/STP	~860	~840	~800

Max latency increase due to control packets is more visible on ULL switches

Onto Data Center Benchmarking RFC

Internet Engineering Task Force Internet-Draft Intended status: Informational Expires: December 6, 2013 J. Rapp L. Avramov Cisco Systems, Inc June 4, 2013

http://www.ietf.org/id/draft-dcbench-def-00.txt

Definitions and Metrics for Data Center Benchmarking draft-dcbench-def-00

Abstract

The purpose of this informational document is to establish definitions, discussion and measurement techniques for data center benchmarking. Also, it is to introduce new terminologies applicable to data center performance evaluations. The purpose of this document is not to define the test methodology, but rather establish the important concepts when one is interested in benchmarking network equipment in the data center.

Onto Data Center Benchmarking RFC

1. Introduction																					3
1.1. Requirements																					4
1.2. Definition for	ma	at																			4
2. Latency	•																				4
2.1. Definition .	•																				4
2.2 Discussion																					5
2.3 Measurement .																					5
3 Jitter																					5
3.1 Definition																					5
3.2 Discussion																					6
3.3 Measurement .																					6
4 Physical Layer Cali	br	at	:ic	on																	6
4.1 Definition																					6
4.2 Discussion																					7
4.3 Measurement .																					7
5 Line rate	•																				7
5.1 Definition	•																				7
5.2 Discussion																					8
5.3 Measurement .																					9
6 Buffering																					9
6.1 Buffer	•																				9
6.1.1 Definition	•																				9
6.1.3 Discussion	•																				11
6.1.3 Measurement																					11
6.2 Incast																					
6.2.1 Definition	•																				11
6.2.2 Discussion	•																				12
6.2.3 Measurement																					
7 Application Through	pu	it:	E	at	:a	Ce	ent	er	: (Goo	bdg	put	E								12
7.1. Definition .	•																			•	12
7.2. Discussion .	•			•				•	•		•	•		•	•			•	•	•	13
7.3. Measurement .																					13

Provides definitions, explanations and guidance on key data center benchmarking topics

Ciscoli

Cisco Public

Agenda – Nexus 3548 – BRKARC-2013

Benchmarking

Architecture

Designs

Architecture
Features
Analytics
Scripting

Product Overview

Nexus 3548 - Rear View

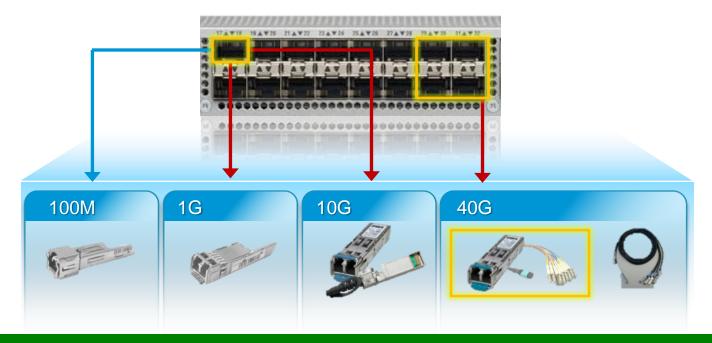
Rear View

© 2013 Cisco and/or its affiliates. All rights reserved.

Nexus 3548 – Front View

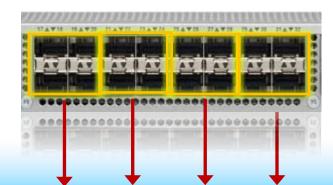
4 Individual Fan Trays

2 Redundant Power Supplies


Front View

Size DxHxW	17x1.72x17.3 in (43 x 4.3 x 44 cm)	A/C and D/C Power with
Weight	19 lbs (8.6 kg)	Forward and Reverse Airflow

© 2013 Cisco and/or its affiliates. All rights reserved.


Nexus 3548 – Physical Media Type

All Speeds from 100m to 40GE native are supported on same form-factor switch

Nexus 3548 – native 40GE cable options

3548(config)# interface eth 1/1 3548(config-if)# speed 40000

40Gi Breakout Fiber Cable Options

QSFP+ to SFP Copper Breakout Cable

Each 4 consecutive ports form a single native 40GE interface. No reload required.

BRKARC-2013

Introduction to the Nexus 3548

Nexus 3548 Specifications

- 48x SFP+ 100M / 1G / 10G / 40G
- Line rate L2/L3, Unicast & Multicast
- 18MB Packet Buffer
- 24K IPv4 Route, 8K MC, 64K Host
- 4K Flexible ACL / QoS
- Data Center TCP (DCTCP/ECN)

Algorithm Boost Features

- Ultra Low Latency ~250 nsec
- WARP Mode ~190nsec
- WARP SPAN ~50nsec
- NAT @ Ultra Low Latency
- Active Buffer Monitoring
- Intelligent Traffic Mirroring
- IEEE-1588 PTP w/Pulse Per Second ,

Algo Boost Engine

Nexus 3548- Performance and Scalability

Performance and Scalability

Hardware Feature	Value
Latency (64-9216Bytes)	~250 nanoseconds
Switching Capacity	960Gbps (720MPPS)
IPv4/v6 Routing Table	24K
IPv4/v6 Host Table	64K/16K
IP Multicast Routes	8K
IGMP Snooping Groups	8K
MAC address table	64K
ACL TCAM	4K
Supported L3 Interfaces	8K
VLANs	4,096
ECMP	32-Way
Etherchannel/Maximum members	48/32
VRF	4K
SPAN/ERSPAN Sessions	8 bidir
NAT Table	2K*

Please check Verified scalability Guide for more details.

BRKARC-2013

© 2013 Cisco and/or its affiliates. All rights reserved.

Nexus 3548 – Software Features

Unicast Routing	Static, RIPv2, EIGRP, OSPF, BGP, HSRP, VRRP, 24K Routes, 64K Adjacer	ncies
Multicast Routing	PIM-SM, SSM, IGMP v2/3, MSDP, 8K IGMP Groups, 8K Multicast routes, PI	M Bi-dir
Layer2	RPVST+ (.1w), MST(.1s), STP extensions, LLDP, Storm Control, LACP, PVL	AN*
Security & Segmentation	VRF-Lite, PACL, VACL, I/E Routed ACLs, Unicast RPF (uRPF), Static NAT	
QoS	Modular QoS CLI, SP/Deficit Weighted Round Robin (DWRR), Classification Marking, ECN, CoPP, PFC, Flow Control	,
System Management	AAA, SPAN, CallHome, SNMP, PTP, ERSPAN	*Post-FCS
(APC 2012	© 2013 Cisco and/or its affiliatos. All rights resourced	Ciscolive,

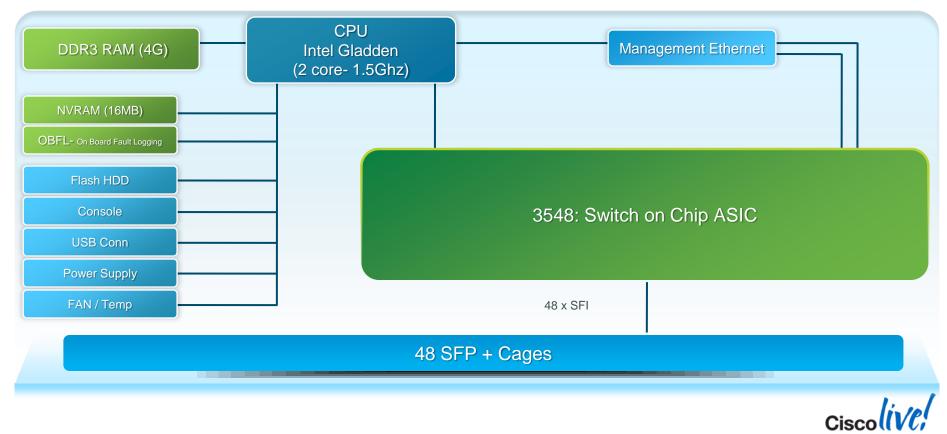
© 2013 Cisco and/or its affiliates. All rights reserved.

Agenda – Nexus 3548 – BRKARC-2013

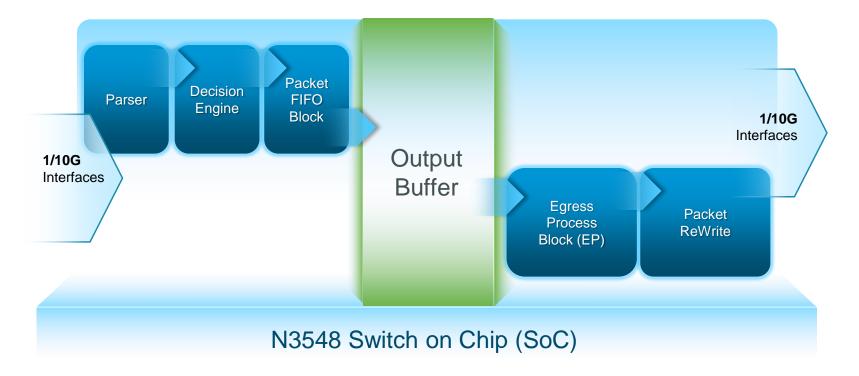
Benchmarking

Architecture

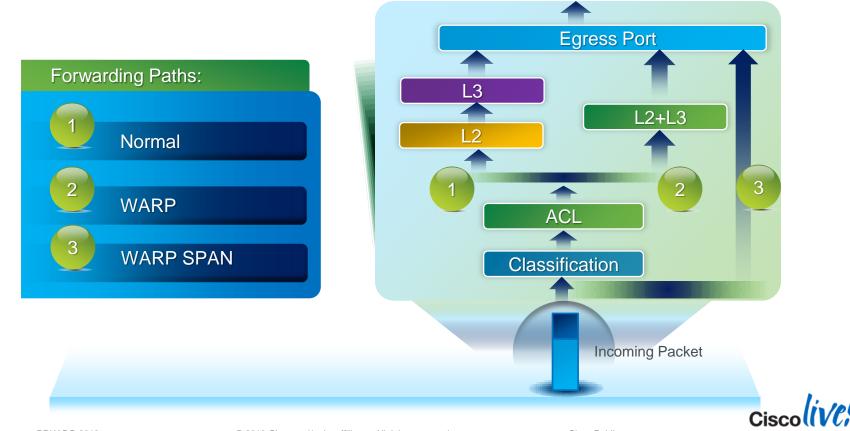
Designs


Architecture
Features
Analytics
Scripting

Product Overview

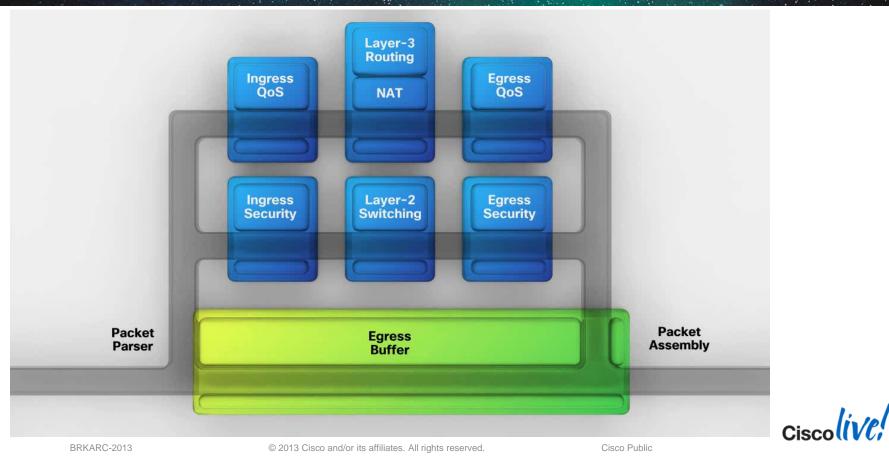


Nexus 3548– Data Plane and SoC Architecture



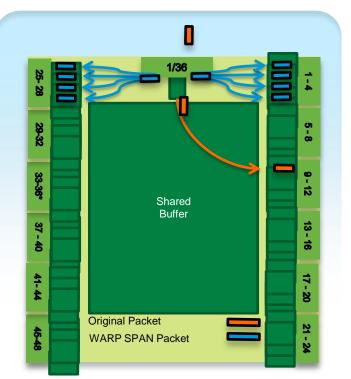
Nexus 3548 Packet Flow

Nexus 3548 Forwarding Paths Logical Diagram



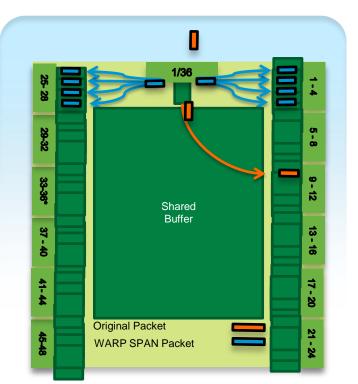
© 2013 Cisco and/or its affiliates. All rights reserved.

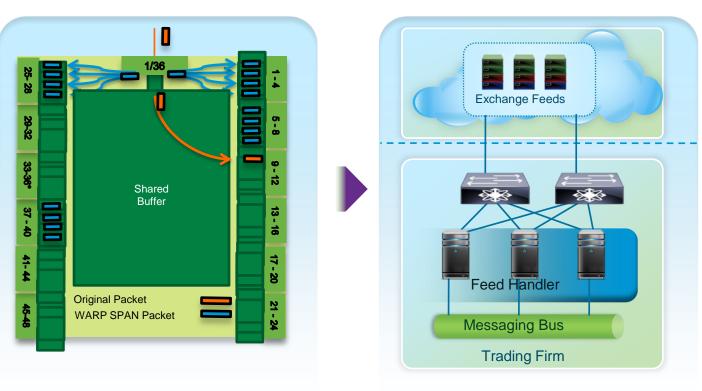
Nexus 3548 Forwarding Paths Comparison Normal/Warp Mode


Feature	Normal Mode	Warp Mode
Latency (FIFO)	~250 nsec	~190 nsec
NAT	Yes	Yes
Ingress RACL/VACL	Yes	Yes
Multicast Routes	8K	8K
Unicast Route	24K	4K
Host Route and MAC Table	64K each	8K Each
L3 ECMP	Yes	No
Egress ACL/PACL	Yes	No
BRKARC-2013 @ 2013 Cisco an	d/or its affiliates. All rights reserved	Cisco Public

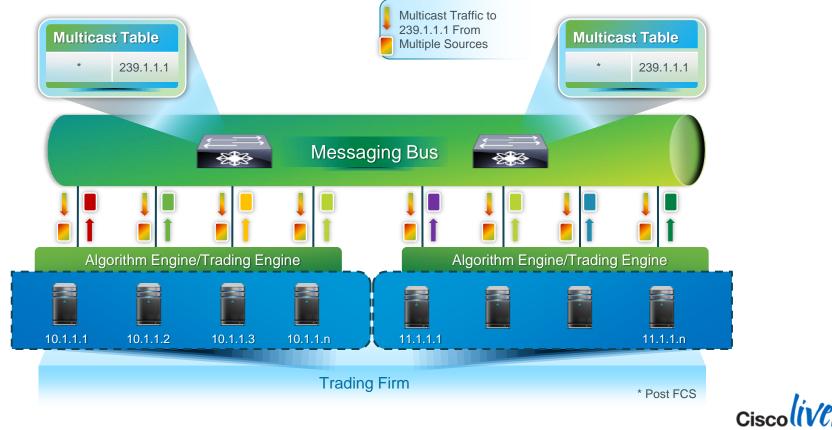
Design Consideration #5 – Feature Set – Impact on Maximum Latency

Nexus 3548 Differentiators WARP SPAN


- WARP SPAN enables mirroring of all the ingress traffic on a dedicated port to user configurable group of ports
- WARP SPAN can be enabled both in normal and WARP mode
- The Latency of the WARP SPAN'd packets would be ~50 nanosec
- WARP SPAN source has to be port Ethernet 1/36
- WARP SPAN destination would be group of 4 ports as shown.
- WARP span source and destination ports has to be 10Gig, no mix of 1Gi and 10Gi


Nexus 3548 Differentiators WARP SPAN

- The traffic received on the WARP SPAN source will be forwarded normally along with the WARP SPAN.
- WARP destination ports are dedicated destination port. These ports cannot be used to receive traffic. However, Other ports in the switch can be used as normal L2/L3 ports.



Nexus 3548 Differentiators WARP SPAN – Use Case – Serving Feed Handler

Nexus 3548 Multicast: adding Pim Bi-Dir

© 2013 Cisco and/or its affiliates. All rights reserved.

Nexus 3548 Multicast enhancements

- PIM Bi-Dir support
- Separate Multicast CoPP policer for RPF failure, Source Registration & Other Multicast traffic
- In addition, Bloom filter to limit RPF failure traffic to CPU
- Per multicast group traffic counter
- Per input port Multicast RPF failure counter*

Ciscolive,

QoS

Nexus 3548 QOS Classification and Marking

Classification

- Classification is done using ACL TCAM (256 ACE)
- Supports classification based on:
- Layer2 CoS
- Layer3 Prec/DSCP
- IPv4 ACL
- IPV6 ACL/MAC ACL/VLAN ACL*

Marking

- Layer2 COS
- Layer3 Prec/DSCP

Nexus 3548 QOS Congestion Avoidance and CoPP

Congestion Avoidance

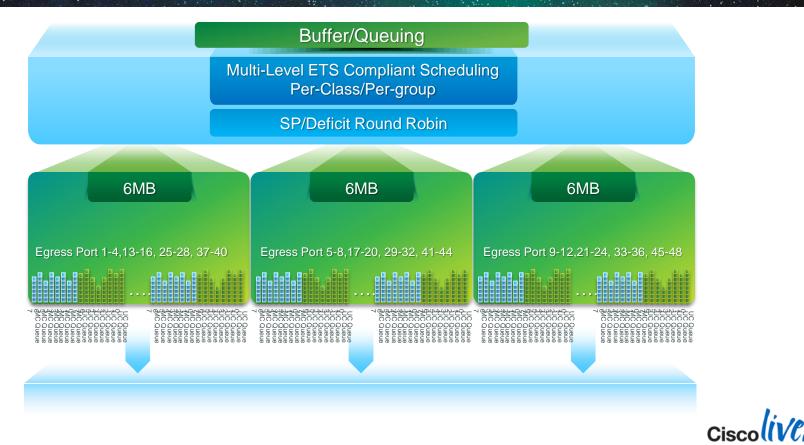
- By Default WRR queue does tail drop if congestion is experienced
- ECN (DCTCP) marking is done if queue reaches the SW configured threshold

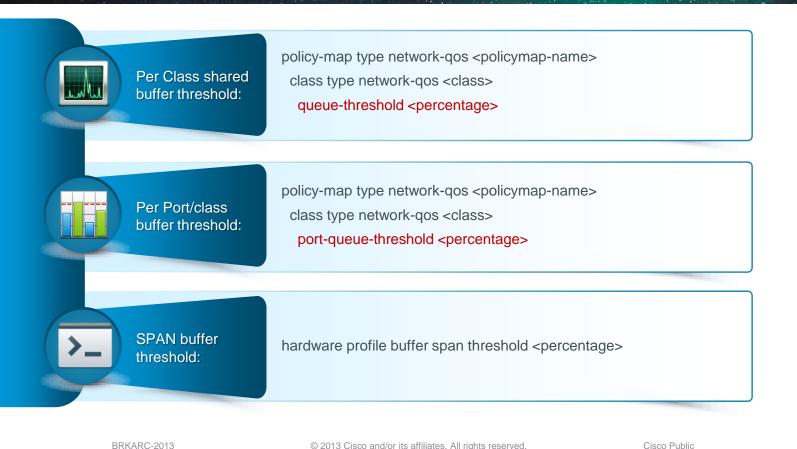
Control Plane Policing (CoPP)

- 64 CoPP Policer
- Separate Multicast CoPP policer for
 - RPF failure,
 - Source Registration
 - Other Multicast traffic.
- Bloom filter to limit RPF
 failure traffic to CPU

© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Public


Nexus 3548 – Multilevel Scheduler


#2 Winner among Traffic classes of same Scheduling Scheme . Based on "bandwidth percentage"

Nexus 3548 QOS Buffer/Queuing

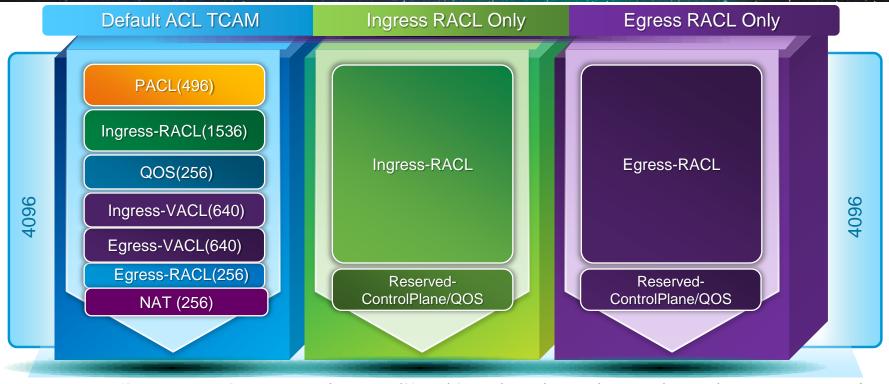
Nexus 3548 QOS CLI Knob for Buffer tuning

Agenda – Nexus 3548 – BRKARC-2013

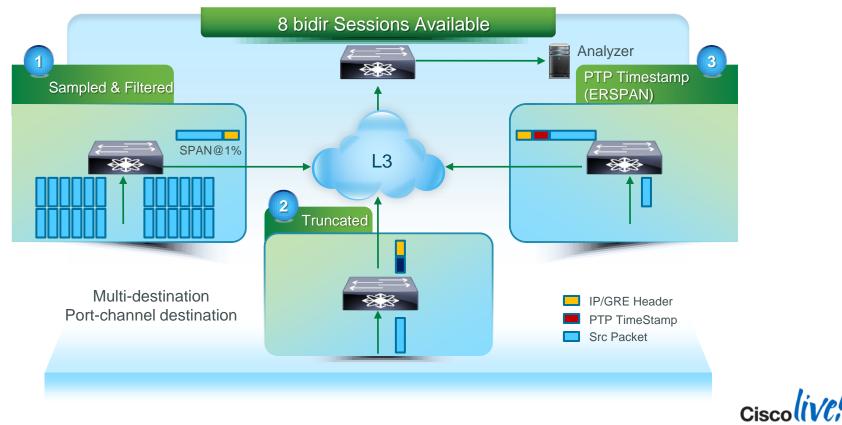
Benchmarking

Architecture

Designs

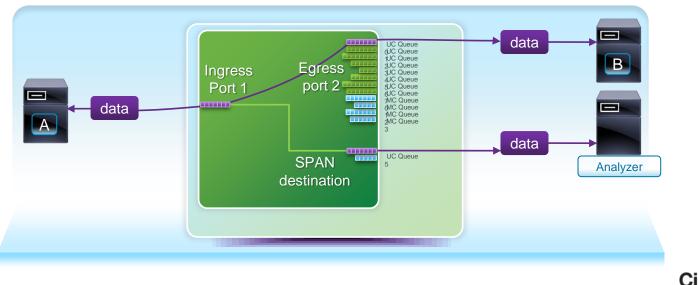

Architecture
Features
Analytics
Scripting

Product Overview

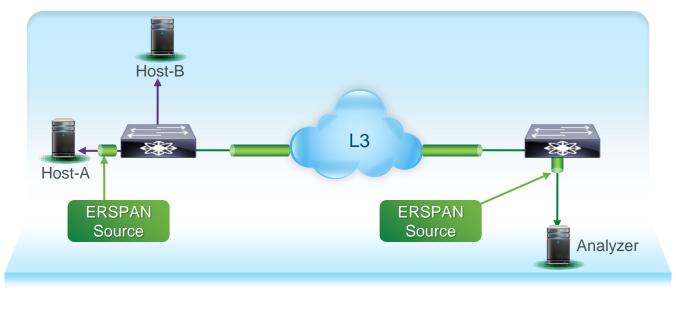


Nexus 3548 Features Flexible ACL TCAM

hardware profile tcam region {arpacl | e-racl} |ifacl | ipsg | nat | qos} |qoslbl | racl} | vacl }tcam_size\


Nexus 3548 Features Advanced SPAN and ERSPAN

© 2013 Cisco and/or its affiliates. All rights reserved.


Nexus 3548 SPAN Flow

- Traffic to be replicated is marked in the ingress flow
- The replication occurs in the switch ASIC, there is no latency impact on the product traffic
- Dedicated queue (queue 5) for SPAN traffic
- SPAN buffer utilization is limited by threshold, max 200 pages (38KB), and this threshold is configurable

ERSPAN

- Encapsulated Remote Switch Port Analyzer (ERSPAN) allows the analyzer to be placed on one location and multiple switches can send mirrored traffic to this analyzer
- Allows to analyze traffic from any port on the network on any remote switch without physically moving the analyzer tool

© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco

Ciscolive,

NAT

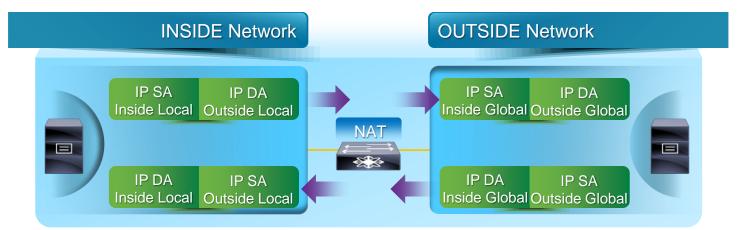
NAT Different Flavors

Static NAT:

This provides option to configure static mapping between local and global addresses and UDP/TCP ports (in case of static PAT)

Dynamic Address Translation:

The user can establish dynamic mapping between the local and global addresses, by describing the local addresses to be translated and the pool of addresses from which to allocate global addresses, and associating the two.

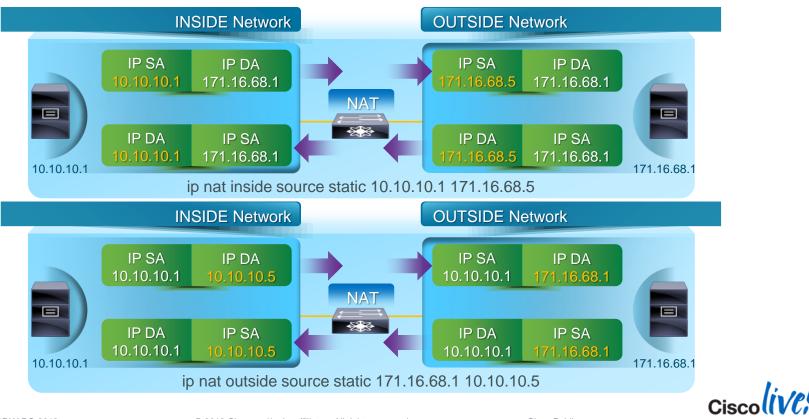

Port Address Translation (PAT):

This provides option to map multiple IPv4 address to fewer number of IPv4 address using different TCP/UDP port numbers

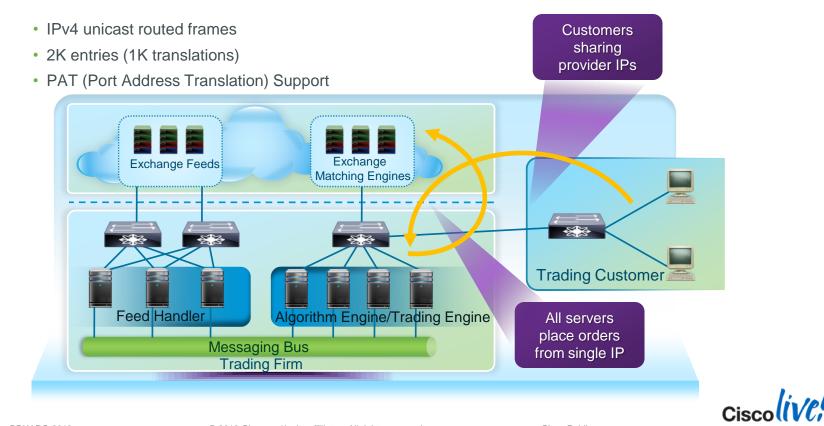
Nexus 3548 - NAT Terminology

Inside local address—The actual IP address assigned to the host.

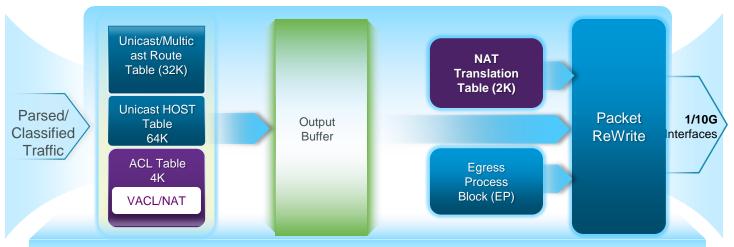
Outside local address—The IP address of an outside host as it appears to the inside network.


Inside global address—A legitimate IP address assigned by the service provider that represents one or more inside local IP addresses to the outside world.

Outside global address—The actual IP address assigned to a host on the outside network.


© 2013 Cisco and/or its affiliates. All rights reserved.

NAT Example Inside/Outside Source Translation



© 2013 Cisco and/or its affiliates. All rights reserved.

Nexus 3548 NAT

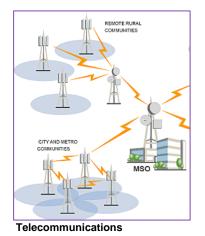
Nexus 3548 NAT Implementation

N3548 NAT/PAT Classification and Translation

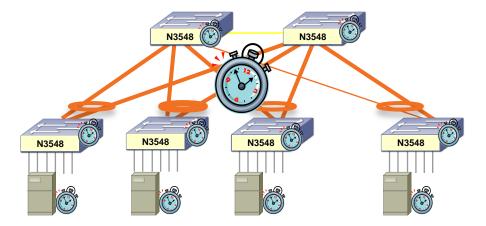
- NAT uses VACL space for classifying and identifying the traffic for NAT translation based on ingress interface
- NAT translation table would provide actual translation info for packet ReWrite block for packet modification before sending the packet out of NAT interface
- For Static NAT, ACL and Translation Table are updated as soon as the NAT static config is added
- For dynamic NAT*, first packet is punted to CPU after ACL classifies it to be NAT flow and then software updates the translation table based on the flow info
 * Post ECS

Cisco Public

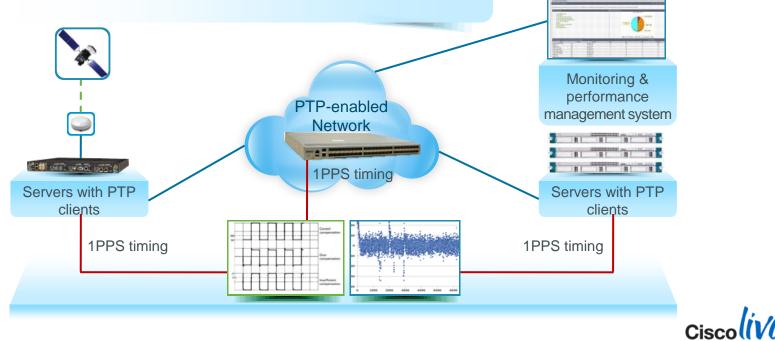
© 2013 Cisco and/or its affiliates. All rights reserved.

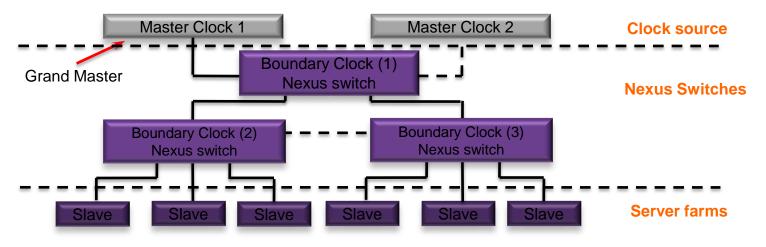


IEEE 1588 PTP


IEEE 1588 – PTP - Application Precision

- Precision Time Protocol: IEEE 1588v2
- Nanosecond Precision

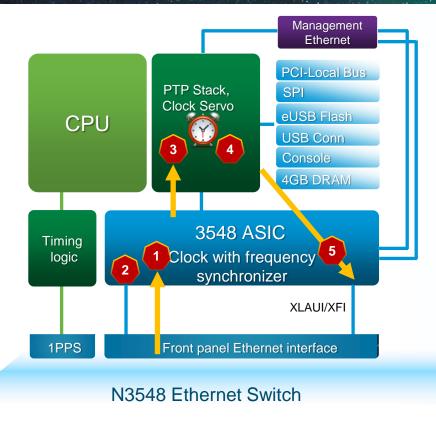



IEEE 1588 Implementation in N3548

Applications @ Switch

- Verify accuracy with 1PPS output
- Integration with ERSPAN for Accurate Timestamp of Monitored Traffic

IEEE 1588 Implementation in N3548


- Elect the grand master, form a master-slave hierarchy. Grand master is selected based on Best Master Clock selection Algorithm (BMCA). (Master clock 1 is selected as Grand Master in the diagram)
- 2 Each slave clock synchronizes itself to the master clock

BRKARC-2013

Cisco Public

IEEE 1588 Implementation in N3548

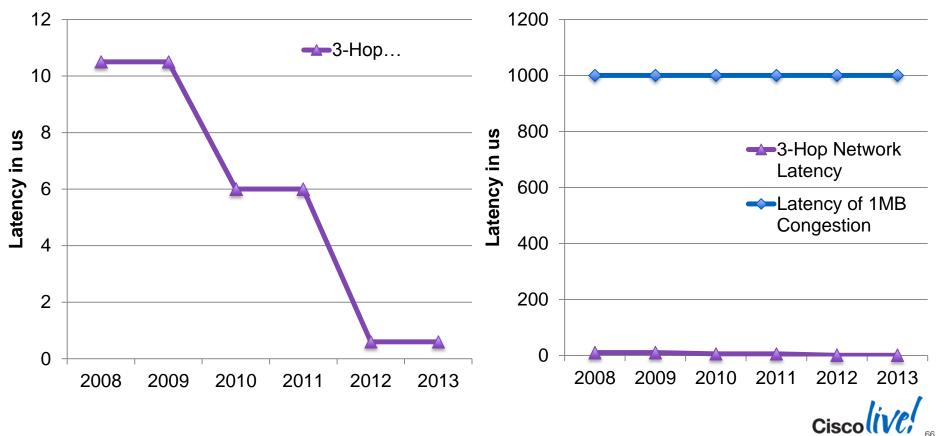
- 1. 1588 packet is timestamped at ingress of ASIC to record the arrive time (t₂)
- 2. Timestamp points to the first bit of the packet (following SFD)
- 3. Packet is copied to CPU with timestamp and destination port
- 4. The packet goes through PTP stack and other process
- 5. The packet is sent out at egress port. (The corresponding timestamp for the TX packet is available from the FIFO TX time stamp) ASIC records the packet's departure timestamp and delivers it to the PTP stack.

Agenda – Nexus 3548 – BRKARC-2013

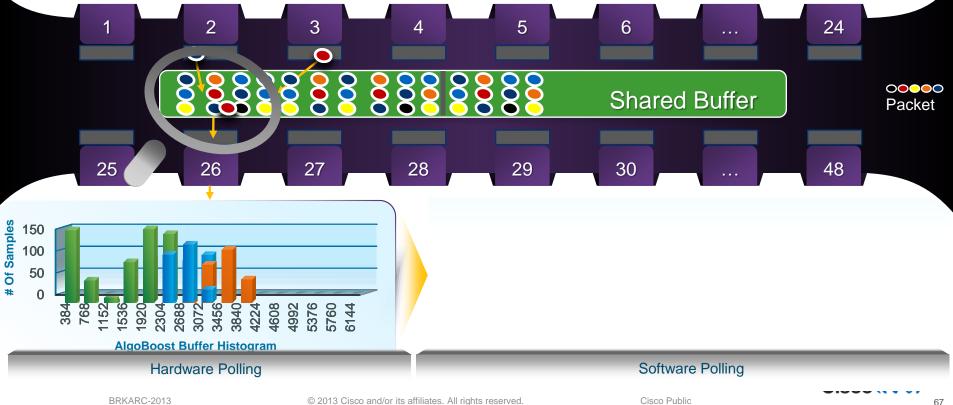
Benchmarking

Architecture

Designs


Architecture
Features
Analytics
Scripting

Product Overview



Why are analytics important?

Nexus 3548 – Active Buffer Monitoring [ABM]

Nexus3548# sh hardware profile buffer monitor								
brief								
Brief CLI issued at: 09/10/2012 22:15:34								
Maximum buffer utilization detected								
1sec	5sec	60sec	5min	1hr				
Buffer Block 1	0K	0K 0ł	< 0K					

Total Shared Buffer Avaliable = 20528 Class Threshold Limit = 13872

Ethernet1/9	0K	0K	0K	0K	0K
<snip></snip>					
Ethernet1/4	2304K	3072K	307	2K	3072

Nexus3548#show hardware profile buffer monitor interface ethernet 1/4 detail Detail CLI issued at: 09/10/2012 22:15:42

Legend -

384KB - between 1 and 384KB of shared buffer consumed by port

768KB - between 385 and 768KB of shared buffer consumed by port

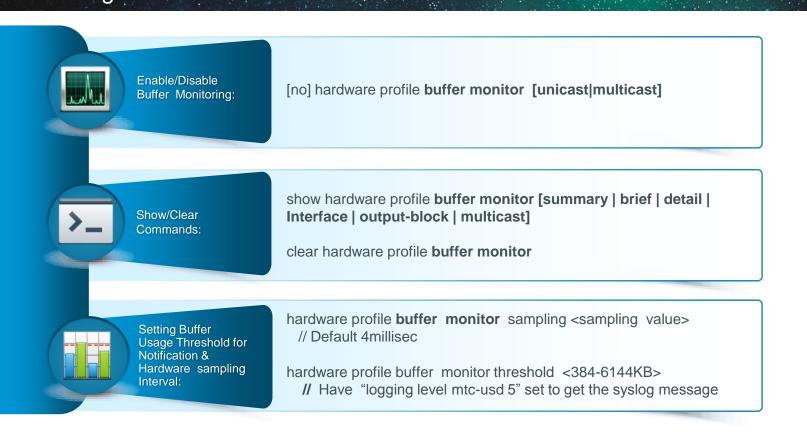
307us - estimated max time to drain the buffer at 10Gbps

Active Buffer Monitoring for port Ethernet1/4 is: Active

KBytes 384 768 1152 1536 1920 2304 2688 3072 3456 3840 4224 4608 4992 5376 5760 6144

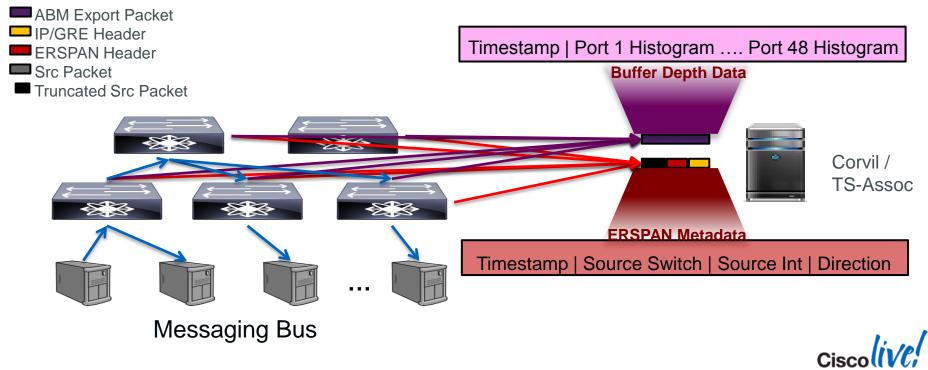
us @ 10Gbps 307 614 921 1228 1535 1842 2149 2456 2763 3070 3377 3684 3991 4298 4605 4912

09/10/2012 22:15:38 09/10/2012 22:15:37 0 34 0 0 0 0 0 0 0 0 09/10/2012 22:15:36 139 111 0 0 0 0 0 0 09/10/2012 22:15:35 0 67 179 0 0 0 09/10/2012 22:15:34 0 174 76 0 0 0 0 0 0 09/10/2012 22:15:33 102 148 0 0 0 09/10/2012 22:15:32 178 43 Ω 0 0 09/10/2012 22:15:31 208 0 0 0 \cap 09/10/2012 22:15:30 0 0 0

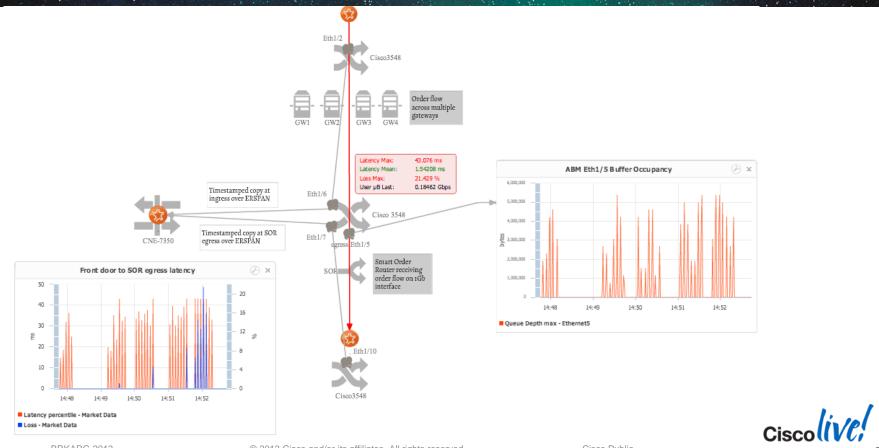

 HW samples default buffer occupancy every 4msec, and update the bin counters. [down to 10ns]

SW polls buffer Histogram counters every second

Ciscolive;


Κ

N3548 - Active Buffer Monitoring Configuration



Combine PTP + ERSPAN for Live Latency monitoring

Nexus 3548 Analytics – Example with Corvil

BRKARC-2013

© 2013 Cisco and/or its affiliates. All rights reserved.

Agenda – Nexus 3548 – BRKARC-2013

Benchmarking

Architecture

Designs

Architecture
Features
Analytics
Scripting

Product Overview

Which port is connected?

n3548-001# show interface brief

Ethernet Interface	 VLAN	Type Mode	Status	Reason	Speed	Port Ch #
Eth1/1 Eth1/2 Eth1/3 Eth1/4 Eth1/5	1 1 1 1 1	eth acces eth acces eth acces eth acces eth acces	s up s up s up	none none none none none	10G(D) 10G(D) 10G(D) 10G(D) 10G(D)	
Eth1/33 Eth1/34 Eth1/35 Eth1/36 Eth1/37	1 1 1 1	eth acces	-	none none SFP not inserted SFP not inserted Administratively down	10G(D) 10G(D) 10G(D) 10G(D) 10G(D)	 -

What is connected there? Classic Network View

n3548-001# show mac address-table dynamic Legend:

MAC	* - primary entry,	G - G	MA	C Address	ses	uted	MAC, 0 -	Overlay
Link	age - seconds since	e firs	of t	ne connect	ted	ntry	using vPC	2 Peer-
VLAN	MAC Address	Тур 		ces and they are o		e NTF -+	Y Port -+	.s
* 1	e8b7.484d.a208	dyn	amic	60570	F	F	Eth1/31	
* 1	e8b7.484d.a20a	dyn	amic	60560	F	F	Eth1/31	
* 1	e8b7.484d.a73e	dyn	amic	60560	F	F	Eth1/34	
* 1	e8b7.484d.a740	dyn	amic	60560	F	F	Eth1/34	
* 1	e8b7.484d.ad15	dyn	amic	60560	F	F	Eth1/28	
* 1	e8b7.484d.ad17	dyn	amic	60560	F	F	Eth1/28	
* 1	e8b7.484d.b3e9	dyn	amic	60570	F	F	Eth1/25	
* 1	e8b7.484d.b3eb	dyn	amic	60560	F	F	Eth1/25	

But, what is really connected and what is running?

Port	Server	FQDN
		~

Eth1/1 c200-m2-10g2-001.cluster10g.com

Eth1/38 c200-m2-10g2-011.cluster10g.com

n3548-00)1# trackerList	
Port	Server	Server Port
 Eth1/2 Eth1/3 Eth1/4 Eth1/5 Eth1/6 Eth1/7 Eth1/8 Eth1/9 Eth1/11	c200-m2-10g2-002 c200-m2-10g2-003 c200-m2-10g2-004 c200-m2-10g2-005 c200-m2-10g2-006 c200-m2-10g2-031 c200-m2-10g2-008 c200-m2-10g2-009 c200-m2-10g2-011	50544 41909 36480 38179 51375 41915 50983 37056 35882
Eth1/12	c200-m2-10g2-012	44551

We build scripts and share them on github! Github/datacenter

Which node is using the buffer?

n3548-001# bufferServerMap

======		==========	========	========	========	====		
Port	Server	1sec	5sec	60sec	5min	1hr		
Eth1/1	c200-m2-10g2-001	0KB	0KB	0KB	0KB	0KB		
Eth1/2	c200-m2-10g2-002	384KB	384KB	1536KB	2304KB	2304KB		
Eth1/3	c200-m2-10g2-003	384KB	384KB	1152КВ	1536KB	1536KB		
Eth1/4	c200-m2-10g2-004	384KB	384KB	2304KB	2304KB	2304KB		
Eth1/5	c200-m2-10g2-005	384KB	384KB	768KB	1536KB	1536KB		
Eth1/6	c200-m2-10g2-006	384KB	2304KB	2304KB	2304KB	2304KB		
Eth1/7	c200-m2-10g2-031							
Eth1/8	c200-m2-10g2-008	Eth1/1	(c200-m2	2-10a2-00)1) has 0	buffer		
Eth1/9	c200-m2-10g2-009	Eth1/1(c200-m2-10g2-001) has 0 buffer usage because it's the name node						
Eth1/11	c200-m2-10g2-011	usa	ge becau		e name no	Jue		

See instantaneously the buffer use per node name

© 2013 Cisco and/or its affiliates. All rights reserved.

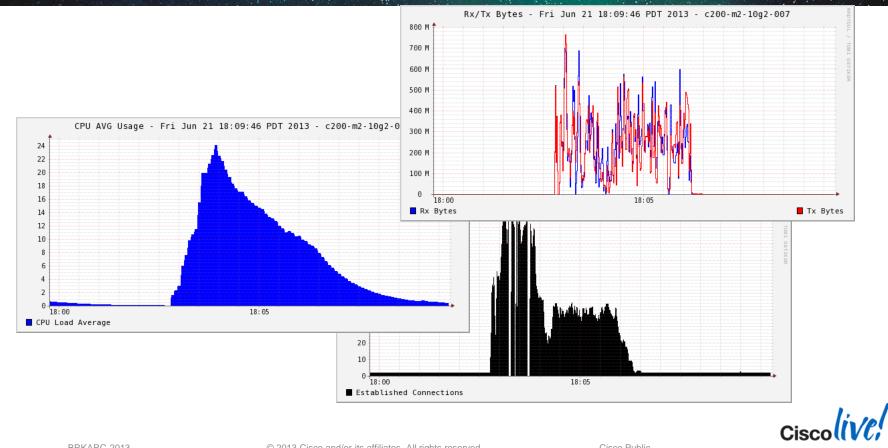
Cis

What's running on this cluster and buffer correlation!

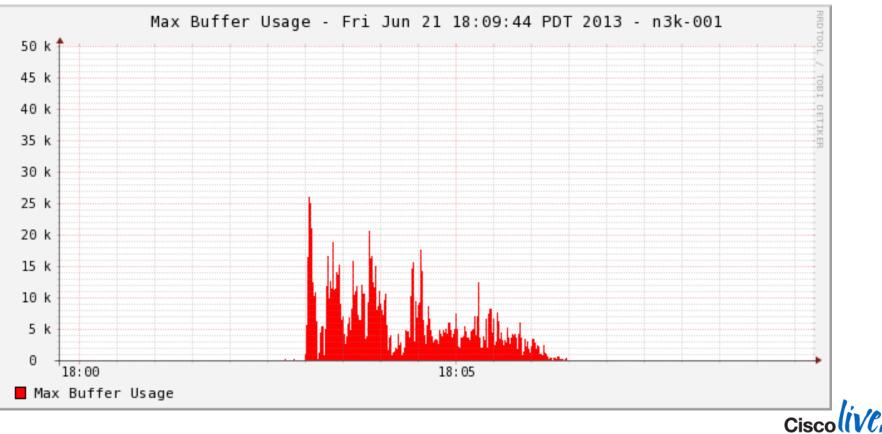
n3548-001# jobsBuffer Hadoop Job Info					
1 jobs currently running JobId RunTime(secs) job_201306131423_0009 120	User hadoop	Priorit NORMAL	У		
Buffer Info - Per Port Port Server	lsec	5sec	60sec		1hr
Eth1/1 c200-m2-10g2-001 Eth1/2 c200-m2-10g2-002 Eth1/3 c200-m2-10g2-003 Eth1/4 c200-m2-10g2-004 Eth1/5 c200-m2-10g2-005	0KB 384KB 384KB 384KB 384KB 384KB	0KB 384KB 384KB 1536KB 768KB	0KB 768KB 1152KB 1536KB 1152KB	0KB 768KB 1152KB 1536KB 1152KB	0KB 768KB 1152KB 1536KB 1152KB

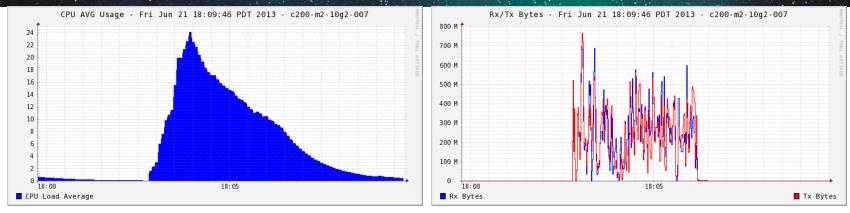
What jobs were running during peak buffer usage ... and for how long were they running

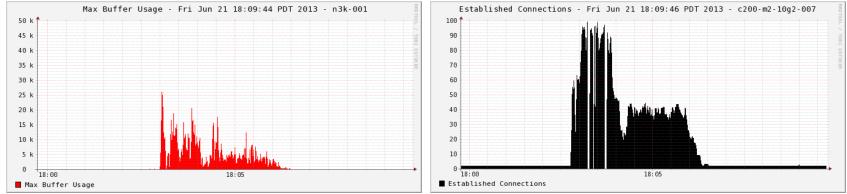
BRKARC-2013


What's running on this cluster + Buffer usage per server

	001(config)# jobsBuffer Job Info					
0 jobs JobId	currently running RunTime(secs)	User	Priorit	У		
Buffer Port	Info - Per Port Server	1sec	5sec	60sec	5min	1hr
Eth1/1 Eth1/2 Eth1/3 Eth1/4 Eth1/5 Eth1/6 Eth1/7	c200-m2-10g2-001 c200-m2-10g2-002 c200-m2-10g2-003 c200-m2-10g2-004 c200-m2-10g2-005 c200-m2-10g2-006 c200-m2-10g2-031	0KB 0KB 0KB 0KB 0KB 0KB	0KB 0KB 0KB 0KB 0KB 0KB	0KB 0KB 0KB 0KB 0KB 0KB	0KB 1920KB 2304KB 2688KB 2304KB 2304KB 1920KB	0KB 1920KB 2304KB 2688KB 2304KB 2304KB 2688KB

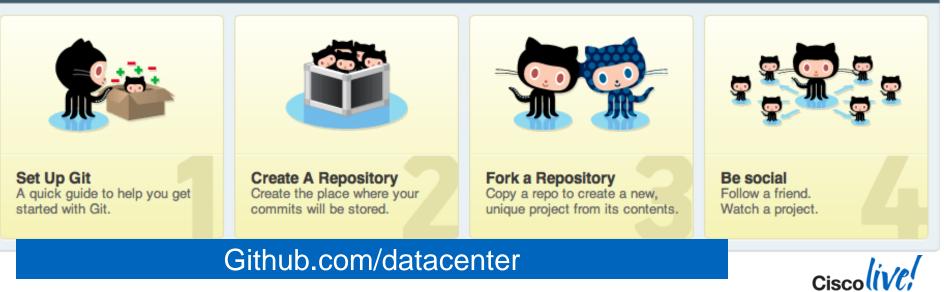

Historical data is also captured


Server Resource Monitoring – CPU, Connections, etc.



Network Resource Monitoring – Buffer Counters etc.

All in one view correlate app, server and network!



Ciscolive,

Where to find more information about scripts?

Software download on product page

GitHub Bootcamp If you are still new to things, we've provided a few walkthroughs to get you started.

© 2013 Cisco and/or its affiliates. All rights reserved.

 \otimes

Example: the ABM script

Github.com/datacenter

PUBLIC		latacenter / Al	3M-Beam		ູ່ກໍ່ Pull Reque	est 🐼 Unw	ttch - 🛨 Star 0 🐉 Fork	
	4-	Code	Network	Pull Requests 0	Issues 0	Wiki	Graphs	Settings
	Active Buffer Monitoring — Read more							
		Clone in Mac	↓ ZIP HTTP S	SH Git Read-Only htt	ps://github.com/dat	acenter/ABM-Be	am.git	Read+Write access

A script for the 3548 to stream active buffer monitoring

Example: the ABM script

ABM-Beam

Active Buffer Monitoring

Python script abmBeam.py is inteded to be run on the Nexus 3548. It sends out Active Buffer Monitoring histogram for all the ports and the buffer-blocks over UDP.

Structure of UDP Packet:

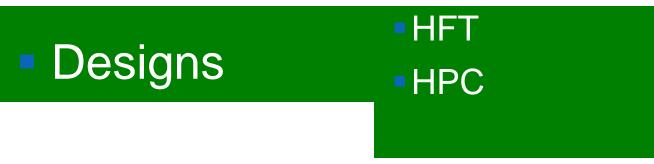

```
Total ABM Data Containing the following:
943
    Bytes :
{
                   Signature "Cisco Nexus 3548 ABM"
    20
       Bytes
              : MGMT IP (a.b.c.d) - 1 Byte for each octet
        Bytes
    4
            Byte
                       а
            Byte
                    :
                       b
            Byte
                       С
           Byte
                    :
                       d
```


Nexus 3548 Analytics – Build your tools!

Analyze Specific Static Traffic

Platform ID	Instance ID	Customer ID	Packet Type	Input Port	Output Port	Queue ID
ALL	ALL	ALL	ALL	ALL	ALL	ALL

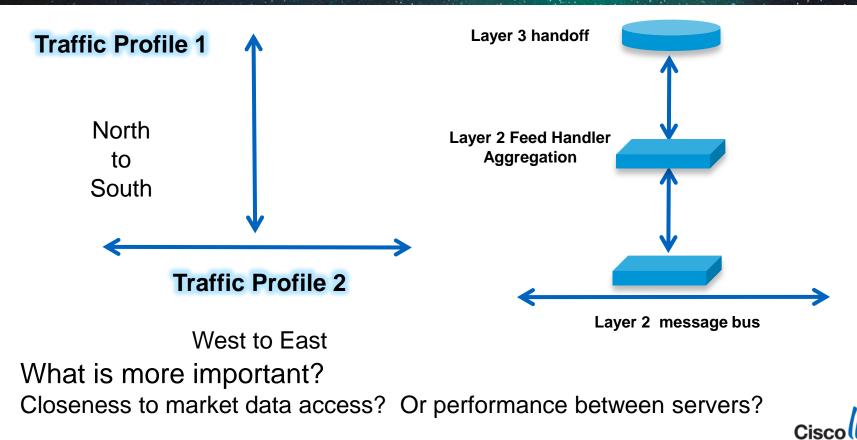
(X: time (us), Y: latency (ns))

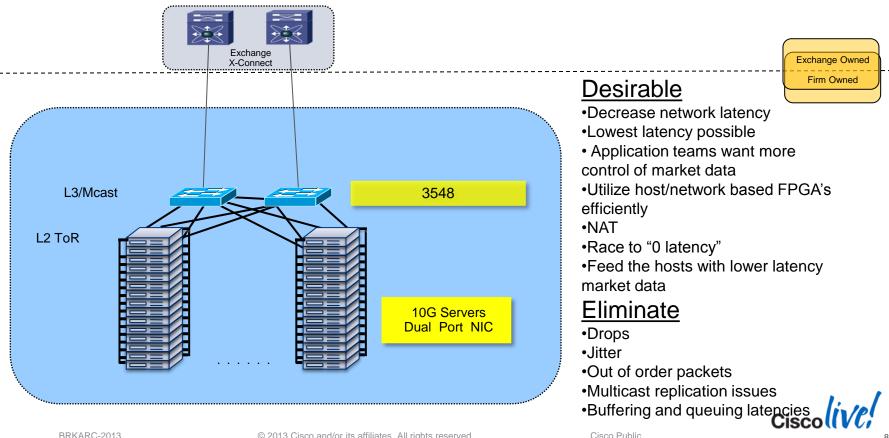

Cisco

BRKARC-2013

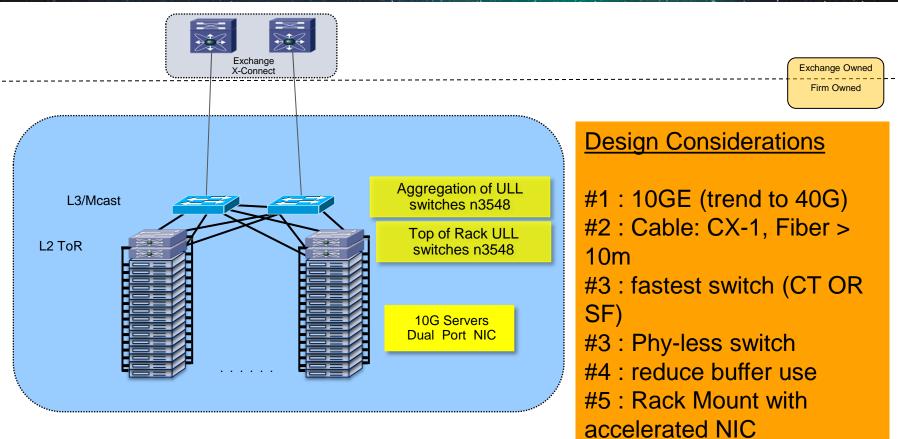
Agenda – Nexus 3548 – BRKARC-2013

Benchmarking


Architecture

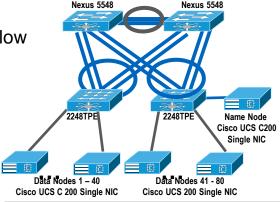



Case Study – Trade Flow Example


Financial Colocation – 12-20 Servers per exchange

Financial Colocation – 12-20 Servers per exchange

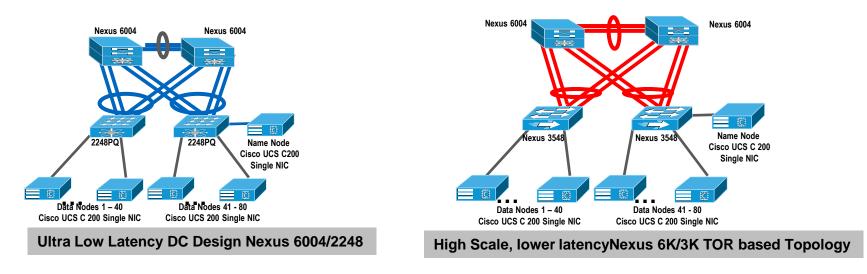
Financial Colocation – 20-48 Servers per exchange



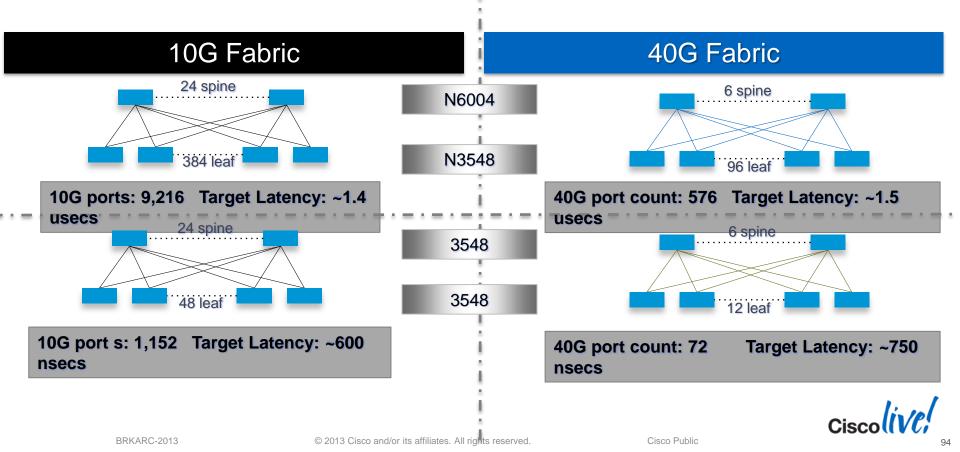
Financial Colocation – Innovate Design at 50ns!

High Performance Compute-HPC

- Hadoop Network Topology Unified Fabric / TOR DC
- Integration with Enterprise architecture essential pathway for data flow
 - Architecture
 - Consistency
 - Management
 - Risk-assurance
 - Enterprise grade features
- Consistent Operational Model
 - NxOS, CLI, Fault Behavior and Management
- Though higher BW east-west compared to traditional transactional networks
- Over the time it will have multi-user, multi-workload behavior
 - Need enterprise centric features
 - Security, SLA, QoS etc.
- Big Data is just another application

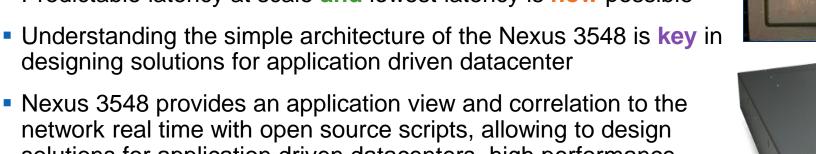


Traditional DC Design Nexus 55xx/2248


High Performance Compute-HPC

Higher Density and Faster with 6004 and 3548!

Evolution of High Performance at High Density



Summary

switches with FILO

Cisco Public

Measure Latency with the appropriate tools and compare

designing solutions for application driven datacenter

Predictable latency at scale and lowest latency is now possible

Nexus 3548 provides an application view and correlation to the network real time with open source scripts, allowing to design solutions for application driven datacenters, high performance data centers, and compact top of rack with L2/L3 and services

© 2013 Cisco and/or its affiliates. All rights reserved.

Layer 3 Configuration VLAN 1: UNUSED VLAN 100: 192.168.100.0/24 VLAN 200: 192.168.200.0/24

VLAN 500: UNUSED PORTS

Node Name: WISP-POD1-SW1 MGMT0: 10.100.200.211

SVI100: 192.168.100.1/24

SVI200: 192.168.200.1/24

Loopback0: 1.1.1.1

FLUKE Traffic

Generator #1 :192.168.100.10/24

Cisco Public

• WISP LAB at BOOTH 158 for Nexus 3548!

Get familiar with NX-OS

Practice!

- Practice the ABM feature
- Practice WARP Mode

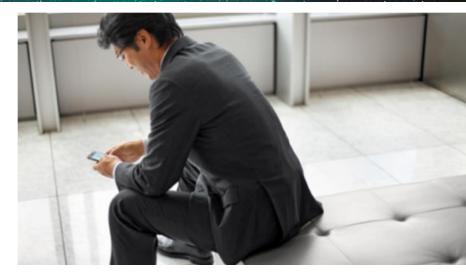
Management Switch 10.100.200.0/24 e1/1 MGMT0 e1/1 MGMT0 e1/1 Node Name: WISP-POD1-SW2 SV1100: 192.168.100.2/24 SV1200: 192.168.200.2/24 Loopback0: 2.2.2.2 FLUKE Traffic Generator #2 IP:192.168.200.10/24

.1Q Trunk

100(native),200

e1/10

MGMTO



Complete Your Online Session Evaluation

- Give us your feedback and you could win fabulous prizes. Winners announced daily.
- Receive 20 Passport points for each session evaluation you complete.
- Complete your session evaluation online now (open a browser through our wireless network to access our portal) or visit one of the Internet stations throughout the Convention Center.

Don't forget to activate your Cisco Live Virtual account for access to all session material, communities, and on-demand and live activities throughout the year. Activate your account at the Cisco booth in the World of Solutions or visit <u>www.ciscolive.com</u>.

#