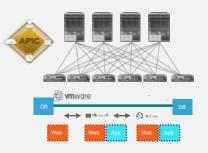


Your Time Is Now

Nexus 9000 Architecture

MILLING

Mike Herbert, Principal Engineer, INSBU BRKDCT-3640



Agenda

- What's New
 - 2nd Generation Nexus 9000
 - Moore's Law and 25G SerDes
 - The new building blocks (ASE-2, ASE-3, ASE-4, LSE, LSE-2)
- Next Generation Capabilities
 - Forwarding, QoS, Telemetry, Encryption
- Design Impacts of 25G, 50G and 100G
- Next Gen Nexus 9000 Switch Platforms
 - Nexus 9200/9300 (Fixed)
 - Nexus 9500 (Modular)

Cisco Data Centre Networking Strategy: Providing Choice in Automation and Programmability

Application Centric Infrastructure

Programmable Fabric

Programmable Network

Modern NX-OS with enhanced NX-

APIs

DevOps toolset used for Network Management

(Puppet, Chef, Ansible etc.)

Turnkey integrated solution with security, centralised management, compliance and scale

Automated application centric-policy model with embedded security

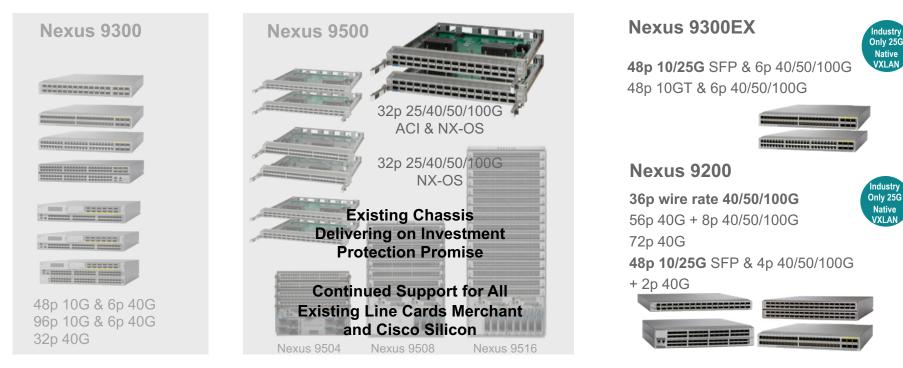
Broad and deep ecosystem

VxLAN-BGP EVPN standard-based

3rd party controller support

Cisco Controller for software overlay provisioning and management across N2K-N9K

Nexus 9400 & 9600 (line cards), 9200, 3100, 3200


BRKDCT-3640

Nexus 9700EX + 9300EX

CISCOUVUT

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public

Nexus 9000 Portfolio 10/25/40/50/100G on Merchant or Cisco Silicon

Nexus 9K/3K Portfolio

Data Centre Deployment Options

Cloud Scale Switch on Chip

- Advanced Telemetry (Flow Cache, SSX, Triggered Events)
- Smart Buffering
- Rich Forwarding Feature Set
- Optimised Scale, Cost, Power

Cisco: Cloud Scale ASIC's

- High Speed Fabrics (ACI, VXLAN, Segment Routing, GRID, HPC)
- General Data Centre Design

Modular X9700EX Fixed 9200 & 9300EX

BCOM Switch on Chip

- BCOM Switch On Chip solution
- Published SDK

Broadcom: Trident II+, Tomahawk

 Fabric Designs (customers specifically looking for BCOM based SOC)

BCOM Cross Bar ASIC

 Off Chip Buffer and Forwarding Tables

Broadcom: Jericho

- Financial Multicast (UDP)
- Collapsed Core/ DC Edge (Large Routing Tables)

Modular X9600R Shipping Fixed Q3CY17

Modular X9400S N3x00

Continued Support of Broadcom Silicon Nexus 3000: 10+ Million Ports Shipped

Nexus 3100V 32p 40G

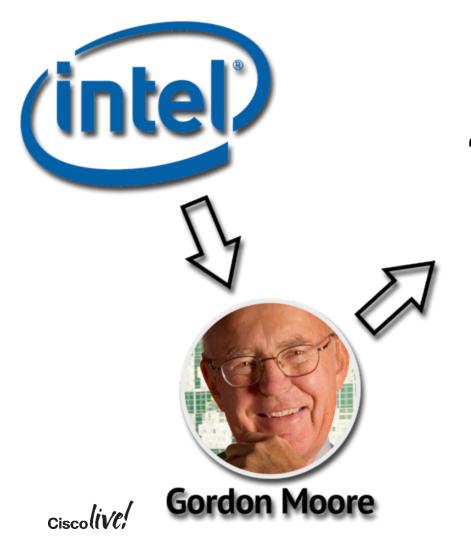
48p 10G & 6p 100G

VXLAN routing, 100G uplinks, No 25G T2+ Nexus 3200 32p 25/50/100G

Shipping for 3+ months

BROADC

64p 40G Single Chip


VXLAN bridging, **25/100G** Tomahawk

Single NX-OS Image for Nexus 3000 & Nexus 9000

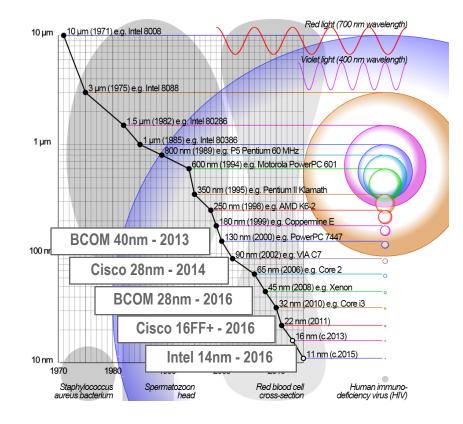
Cisco((VC;

Agenda

- What's New
 - 2nd Generation Nexus 9000
 - Moore's Law and 25G SerDes
 - The new building blocks (ASE-2, ASE-3, LSE)
- Next Generation Capabilities
 - Forwarding, QoS, Telemetry
- Design Impacts of 25G, 50G and 100G
- Nexus 9000 Switch Platforms
 - Nexus 9200/9300 (Fixed)
 - Nexus 9500 (Modular)

"The number of transistors incorporated into a chip will approximately double every 24 months ..."

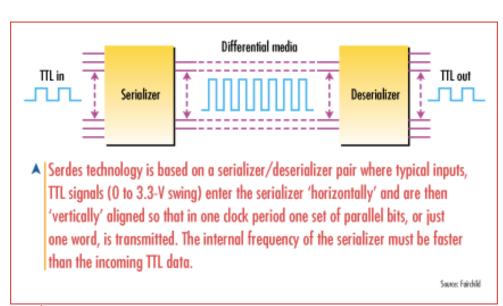
"Moore's Law" - 1975


Moore's Law

It's all about the Economics

- Increased function, efficiency
- Reduced costs, power
- ~ 1.6 x increase in gates between process nodes

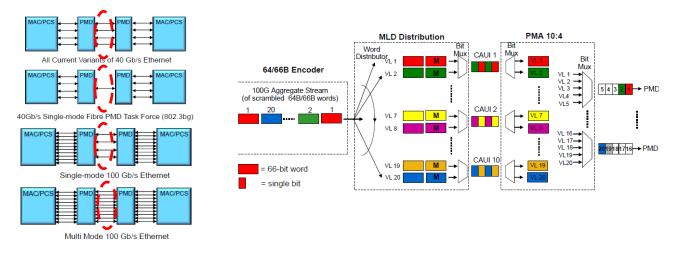
The new generation of Nexus 9000 is leveraging 16nm FF+ (FinFet)



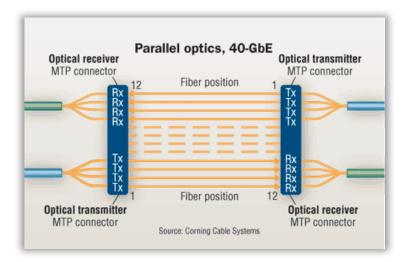
http://en.wikipedia.org/wiki/Semiconductor device fabrication

SerDes: Serialiser + Deserialiser

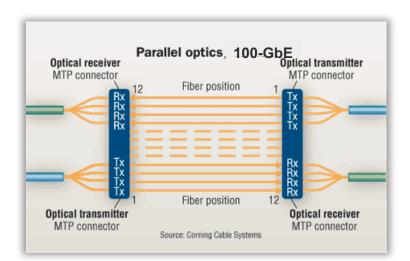
- SerDes Clocking Increases
 - 10.3125G (40G, 10G)
 - 25.78125(25G/50G/100G) 2016



Ciscolive!

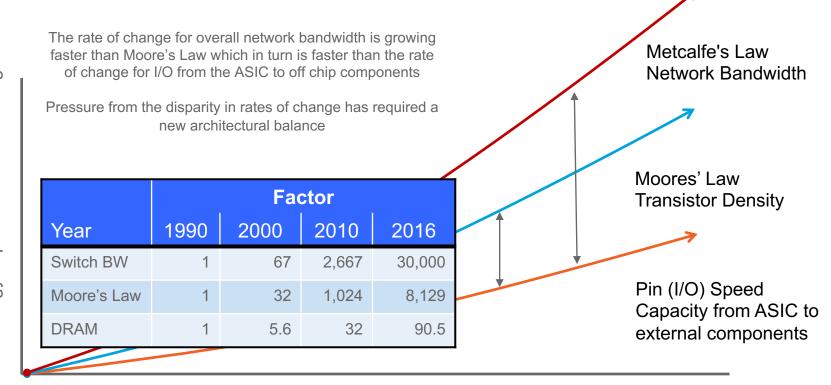

Multi Lane Distribution (MLD)

MLD (Multi Lane Distribution)

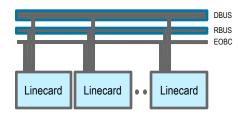


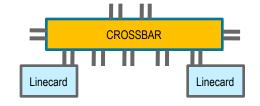
- 40GE/100GE interfaces have multiple lanes (coax cables, fibres, wavelengths)
- MLD provides a simple (common) way to map 40G/100G to physical interfaces of different lane widths

Parallel Lanes $4 \times 10 = 40G$ shifts to $4 \times 25 = 100G$


Backed by 10G SerDes

Backed by 25G SerDes


Ciscolive!


Metcalfe, Moore and ASIC Pin I/O Rates The Switch Architectural Challenge

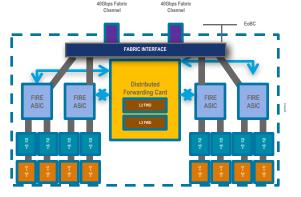
Ciscolive,

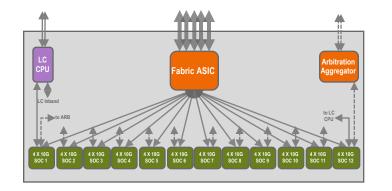
Switching Architecture Changes Shifting of Internal Architecture

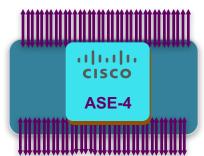
Design Shifts Resulting from Increasing Gate Density and Bandwidth

10/100M Cisco*live*

100M/1G




1G/10G

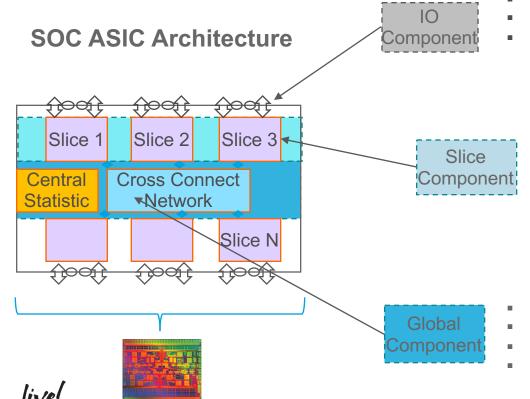


10G/100G

Switching Architecture Changes Consolidation of Functions onto fewer components

32 x 10G Ports

48 x 10G Ports


64 x 100G Ports

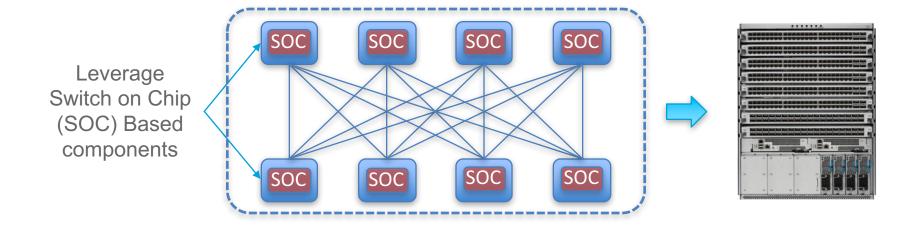
Switch On Chip (SOC) It is a full multi-stage switch on an ASIC

- The IO components consists of high speed SerDes.
- They vary based on the total number of ports
- They determine the total bandwidth capacity of the ASIC
 - Multi-mode MAC
 - Packet parser
 - Forwarding controller
 - Input packet buffering for pause
 - Output packet buffering
 - Buffer accounting
 - Output queuing and scheduling
 - Output Rewrite
- Gen2 PCIe controller for register and eDMA access
- Broadcast network to connect all the slices together
- Counter modules to collect packet statistics
- PLL to generate core and MAC clocks

Fixed First Generation Nexus 9300 A Dual ASIC based Switch

Nexus 9372E

Leverages Merchant (BCOM) + Cisco


Fixed Second Generation Nexus 9200 & 9300EX A Single ASIC based Switch

The Switch 'is' the ASIC

Modular Nexus 9500 A CLOS Based SOC Architecture

Non Blocking Leaf and Spine based CLOS Network inside the Switch

Ciscolive

ASIC Used by Nexus 3000/9000 **ASE & ALE** ASE2, ASE3 & ASE4 & LSE2 LSE BROADCOM. **CISCO** CISCO Merchant + Cisco 16nm 40nm 28nm **Merchant** Merchant BROADCOM BROADCOM BROADCOM 28nm 40nm Tomahawk Jericho Trident T2 Trident 2+

1st Gen Switches:

Cisco live,

2nd Gen Switches: 2016+

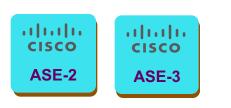
BROADCOM

Jericho+

ASIC Used by Nexus 3000/9000

- ASE2 ACI Spine Engine 2
 - 3.6 Tbps Forwarding (Line Rate for all packet sizes)
 - 36x100GE, 72x40GE, 144x25GE, ...

ASE-3

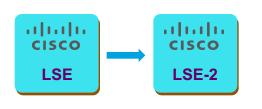

111111

CISCO

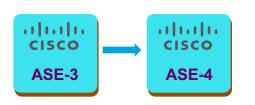
ASE-2

- ASE3 ACI Spine Engine 3
- 1.6 Tbps Forwarding (Line Rate for all packet sizes)
- 16x100GE, 36x40GE, 74x25GE, ...
- Flow Table (Netflow, ...)
 - Standalone leaf and spine, ACI spine
 - 16K VRF, 32 SPAN, 64K MCAST fan-outs, 4K NAT
 - MPLS: Label Edge Router (LER), Label Switch Router (LSR), Fast Re-Route (FRR), Null-label, EXP QoS classification
 - Push /Swap maximum of 5 VPN label + 2 FRR label
 - 8 unicast + 8 Multicast
 - Flexible DWRR scheduler across 16 queues
 - Active Queue Management
 - AFD ,WRED, ECN Marking
 - Flowlet Prioritisation & Elephant-Trap for trapping 5 tuple of large flows

CISCO 16nm


ASIC Used by Nexus 3000/9000

- LSE Leaf Spine Engine
- Standalone leaf & spine, ACI leaf and spine
- Flow Table (Netflow, ...)
- ACI feature and service and security enhancement
- 32G fibre channel and 8 unified port
- 25G and 50G RS FEC (clause 91)
- Energy Enhancement Ethernet, IEEE 802.3az
- Port TX SPAN support for multicast
- MPLS: Label Edge Router (LER), Label Switch Router (LSR), Fast Re-Route (FRR), Null-label, EXP QoS classification
- Push /Swap maximum of 5 VPN label + 2 FRR label
- 16K VRF, 32 SPAN, 64K MCAST fan-outs, 50K NAT
- 8 unicast + 8 Multicast with flexible DWRR scheduler across 16 queues
- Active Queue Management
 - AFD ,WRED, ECN Marking
- Flowlet Prioritisation, Elephant-Trap for trapping 5 tuple of large flows



Evolving ASIC 'Tick' to the EX 'Tock'

- LSE Leaf Spine Engine
- Standalone leaf & spine, ACI leaf and spine
- Larger Scale for Route and Policy Tiles
- Flow Table (Netflow, ...) + Streaming HW Statistics
- Line Rate Hardware Encryption (MACSEC & CloudSEC)
- Flowlet Prioritisation, Elephant-Trap for trapping 5 tuple of large flows

- LSE Leaf Spine Engine
- Standalone leaf & spine, and ACI spine
- Flow Table (Netflow, ...) + Streaming HW Statistics
- Flowlet Prioritisation, Elephant-Trap for trapping 5 tuple of large flows

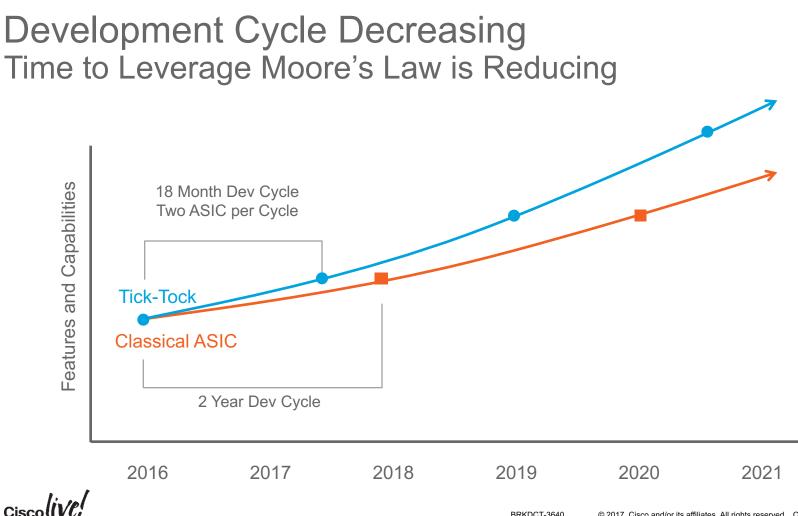
·1|1.1|1. CISCO

16nm

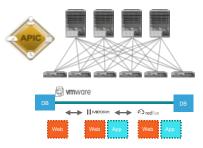
Merchant 28nm

ASIC Used by Nexus 3000/9000

- Broadcom Tomahawk
- 3.2 Tbps I/O & 2.0 Tbps Core

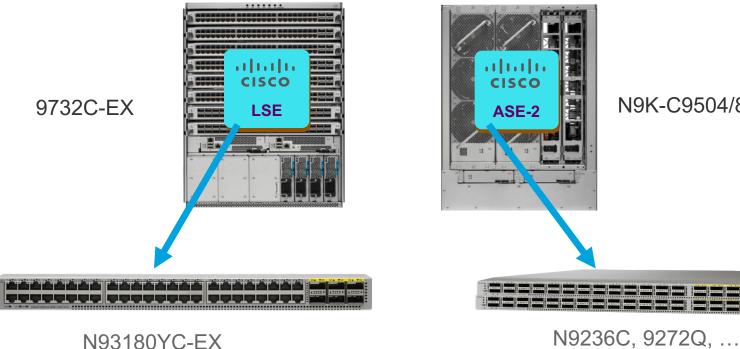


- Tomahawk supports 3200 Gbps when average packet size is greater than 250 bytes. When all ports are receiving 64 byte packets, throughput is 2000 Gbps
- 32 x 100GE
- Standalone leaf and spine
- VXLAN Bridging


- Broadcom Trident 2+
- 1.28Tbps I/O & 0.96T Core (< 192B pkt)
 - 32 x 40GE (line rate for 24 x 40G)
- Standalone leaf and spine
- VXLAN Bridging & Routing (with-out recirculation)

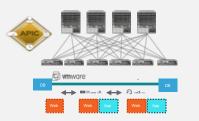
Responding to Fast Market Changes Sharing Platforms Among Different Architectures

Common hardware platforms for ACI and NX-OS fabric



- Sharing platform with UCS FI
 - 3rd Generation FI is based on first gen 9300
 - 4th Generation FI will be based on 2nd Generation 9300EX

Responding to Fast Market Changes Sharing ASICs Among Platforms



N9K-C9504/8/16-FM-E

Why Do We Discuss Automation So Much?

Application Centric Infrastructure

Turnkey integrated solution with security, centralised management, compliance and scale

Automated application centric-policy model with embedded security

Broad and deep ecosystem

Programmable Fabric

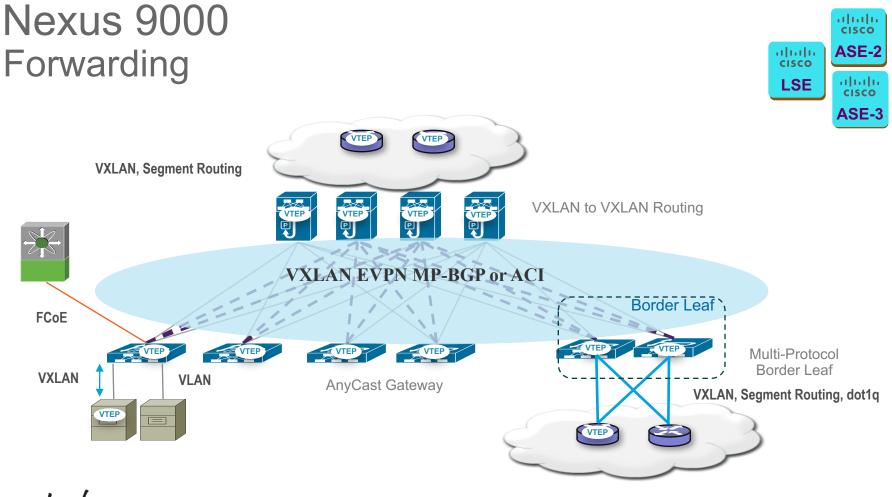
VxLAN-BGP EVPN standard-based

3rd party controller support

Cisco Controller for software overlay provisioning and management across N2K-N9K Modern NX-OS with enhanced NX-APIs

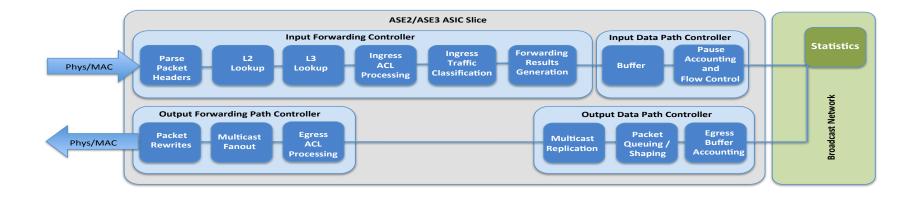
DevOps toolset used for Network Management (Puppet, Chef, Ansible etc.)

Automation, API's, Controllers and Tool-chain's


When you take advantage of Moore's Law you need to shift to a server like operational models

No Changes to EOS and EOL

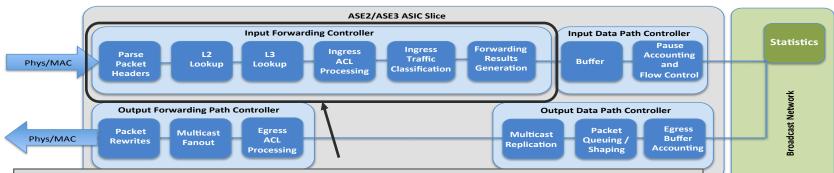
- Will you see more rapid changes in the Networking Space from the Industry?
 - YES
- Does this mean you will be forced to upgrade faster?
 NO
- EoS and EoL policies will still be the same
- The choice is still yours


Agenda

- What's New
 - 2nd Generation Nexus 9000
 - Moore's Law and 25G SerDes
 - The new building blocks (ASE-2, ASE-3, LSE)
- Next Generation Capabilities
 - Forwarding, QoS, Telemetry
- Design Impacts of 25G, 50G and 100G
- Next Gen Nexus 9000 Switch Platforms
 - Nexus 9200/9300 (Fixed)
 - Nexus 9500 (Modular)

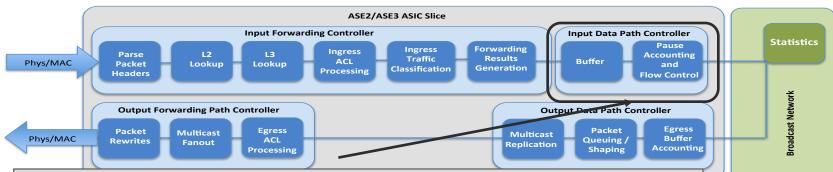
Nexus 9000 Life of a Packet ASE2 / ASE3 / LSE

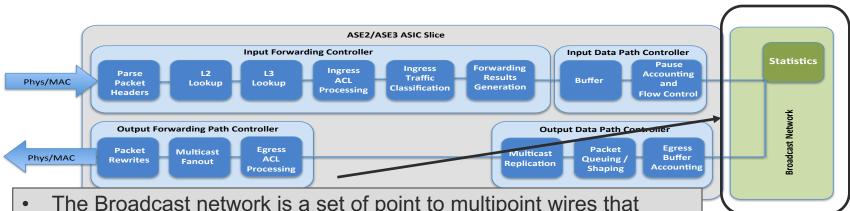
Ciscolive


Life of a Packet in ASE2 / ASE3 / LSE ASIC

- Packet arrives at input via serial high speed IO, i.e SerDes
- The serial data is converted to parallel stream and MAC is responsible to validate framing protocol
- The MAC operates in cut through and pass the packet to client interface

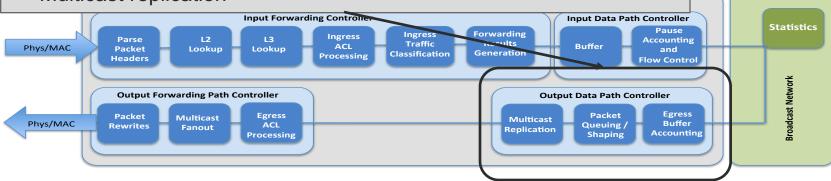
Cisco((VC;

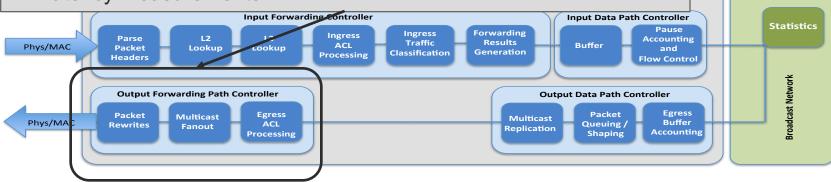

Life of a Packet in ASE2 / ASE3 / LSE ASIC

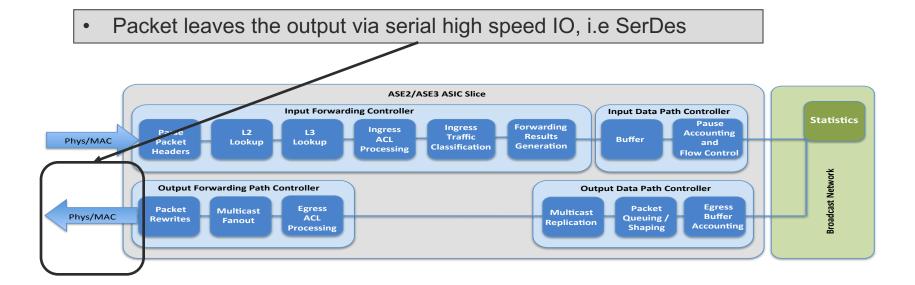

- The packet header is parsed to extract field that are used to apply policy and making forwarding decision and load-balancing
- The parsed field are used in a series of forwarding table and access control list lookup
- Flow Table Analytics

Cisco((VC;

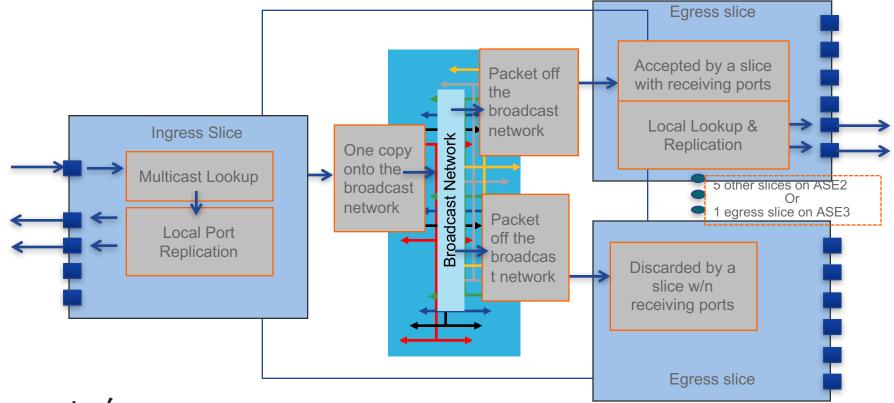
Life of a Packet in ASE2 / ASE3 / LSE ASIC


- Buffer the packet to handle the latency of input forwarding controller pipeline
- Perform pause accounting and flow control generation
- Implements headroom buffers for PAUSE absorption


- The Broadcast network is a set of point to multipoint wires that allows any to any connectivity between the slices.
- Each input slice drives wires that is connected to all output slices
- This is *not* a scheduled network, each output slice has bandwidth to accept data from all input slices *simultaneously*


Cisco((VC;

- Output packet buffering
- Packet buffer accounting
- Output queuing and scheduling
- Multicast replication


- Output forwarding controller performs egress ACLs
- It performs packet rewrite and encapsulation
- It performs multicast expansion
- Latency Measurements

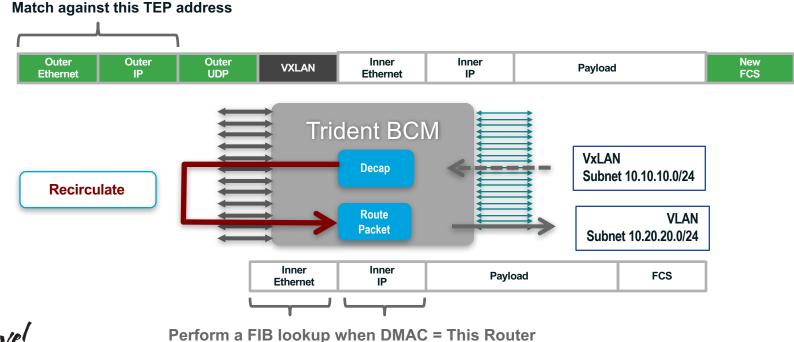
Ciscoliv/

Multicast Packet Forwarding

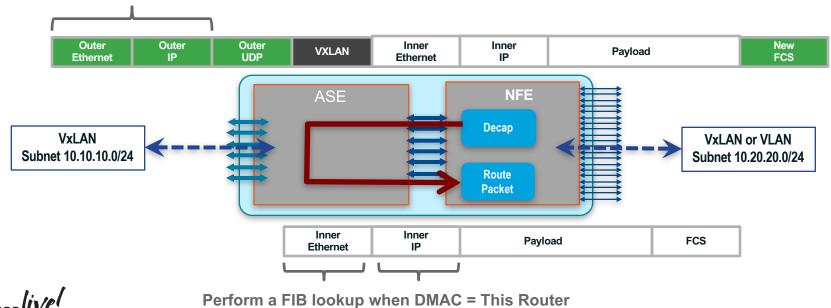

Ciscolive,

Agenda

- What's New
- Next Generation Capabilities
 - Forwarding Packet Walks
 - Forwarding Protocol Support
 - Forwarding Table Templates
 - Telemetry
 - Encryption (MACSEC and CloudSEC)
 - QoS & Buffering
- Design Impacts of 25G, 50G and 100G
- Next Gen Nexus 9000 Switch Platforms


Cisco (VC;

VXLAN Support Gateway, Bridging, Routing*

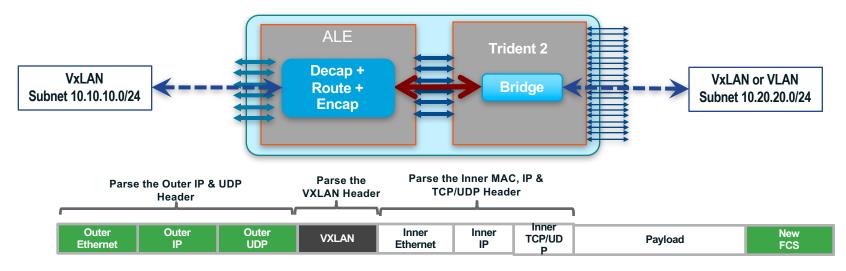

VxLAN to VLAN Routing – Trident 2

VxLAN routed mode via loopback is possible, packet is de-encapsulated, forwarded out through a loopback (either Tx/Rx loopback or via external component), on second pass the match for 'my router' MAC results in L3 lookup and subsequent forward via L2 VLAN

VLAN/VxLAN to VxLAN Routing First Gen Nexus 9300 NX-OS Mode

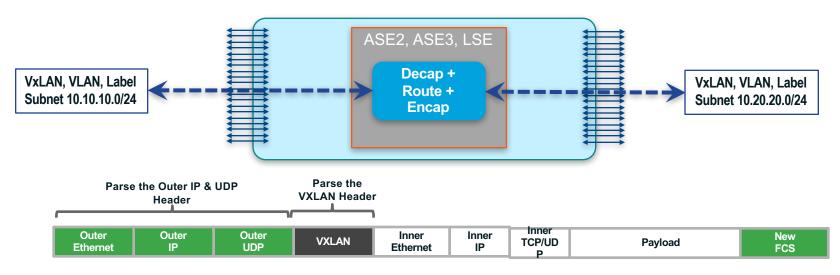
- In NX-OS mode forwarding is performed by the NFE (Trident-2) ASIC
- ALE provides extended buffer, some SPAN and ERSPAN functions
- Re-circulation is performed for VXLAN Routing

BRKDCT-3640

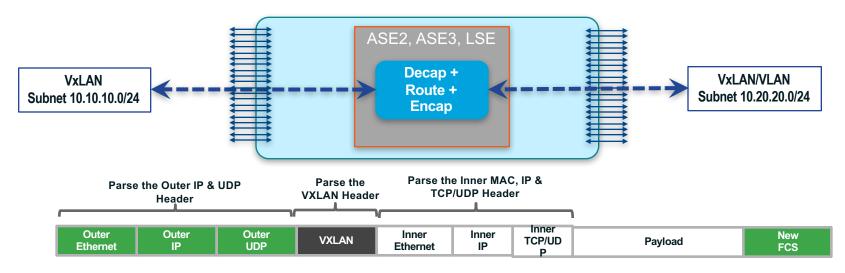

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public

45

Match against this TEP address

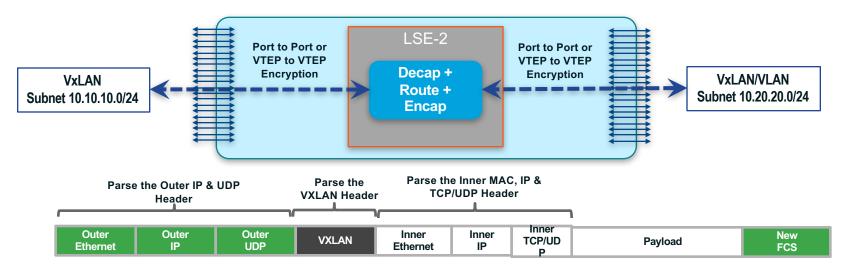

VLAN/VxLAN to VxLAN Routing First Gen Nexus 9300 ACI Mode

- ALE (leaf) and ASE (Spine) ASIC parse the full outer MAC, IP/UDP header, VXLAN and inner MAC, IP & UDP/TCP header in one pipeline pass
- VLAN to VXLAN 'and' VXLAN to VXLAN routing is performed in a single pass
- Line rate performance for all encapsulations with all packet sizes


VLAN/VxLAN to VxLAN Routing Nexus 9300EX, 9200 Standalone Mode

- ASE2, ASE3 & LSE ASIC parse the full outer MAC, IP/UDP header, VXLAN header in one pipeline pass
- VLAN to VXLAN 'and' VXLAN to VXLAN routing is performed in a single pass
- Line rate performance for all encapsulations with all packet sizes

VLAN/VxLAN to VxLAN Routing Nexus 9300EX ACI Mode


- LSE (Leaf and Spine) ASIC parse the full outer MAC, IP/UDP header, VXLAN and inner MAC, IP & UDP/TCP header in one pipeline pass
- VLAN to VXLAN 'and' VXLAN to VXLAN routing is performed in a single pass
- Line rate performance for all encapsulations with all packet sizes

VLAN/VxLAN to VxLAN Routing and Encryption Nexus 9300**FX** ACI and Standlaone Mode

- All of the 'EX' Capability 'plus'
- MACSEC Encryption of traffic port to port (100Gbps per port)
- CloudSec Encryption of traffic over L3 backbone at line rate (100Gbps per port)
 - GCM-AES-128 (32-bit PN), GCM--AES-256 (32-bit PN), GCM-AES-128-XPN (64-bit PN), GCM-AES-256-XPN (64-bit PN)

Segment Routing – MPLS w/ Explicit Path Control 9200 and 9300EX

Nodal SID

Prefix

Ciscoll

Adjacency

SID

Data-Plane: Uses MPLS label stack to perform Source Routing

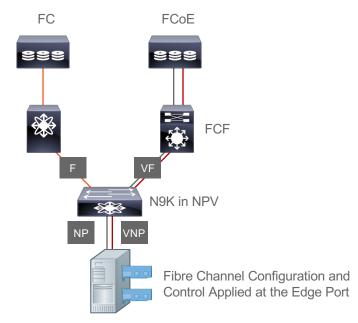
Control-Plane: BGP-LU, BGP endpoints and IP Prefixes are learned through hop by hop LU underlay

A stack of Segments can be used by the source to steer any flow along any desired path by encoding it in packet header as an ordered list of segments

Shipping – N3k/N9K

- Node-SID/Prefix-SID
- BGP-LU for control plane

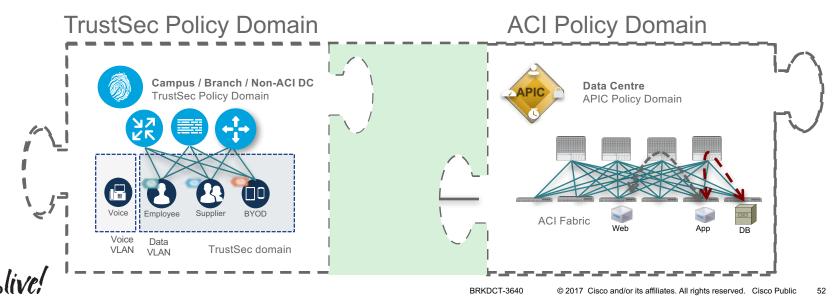
Q3CY16 - N3K/N9K


- Adjacency-SID; Binding SID
- Egress Peer Engineering with BGP-LS
- L3VPN/EVPN support over SR (Q4CY16)

Segment Routing in Data Centre using Nexus 9000 and 3000 Session ID: BRKDCN-2050 & Session ID: LABRST-2020

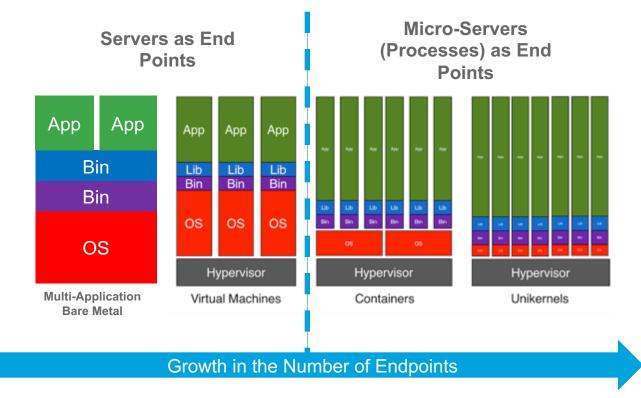
FCoE NPV – Unified Fabric Switching Nexus 9300 & 9300EX

Connect FCoE-capable Hosts to a FCoE-Capable FCoE Forwarder (FCF) Device


- Standalone NX-OS support
 - FCoE NPV on N92xx and N93xx
 - FCoE on FEX N2348UPQ
- ACI support
 - 9300-EX
 - FEX including B22

Enabling Group-Based Policies Across the Enterprise VXLAN-GPE (ACI EPG) and TrustSec SGT

- Goal: Consistent Security Policy Groups and Identity shared between TrustSec and ACI domains
- Allow TrustSec security groups to be used in ACI policies
- Allow ACI EndPoint Groups to be used in policies across the Enterprise

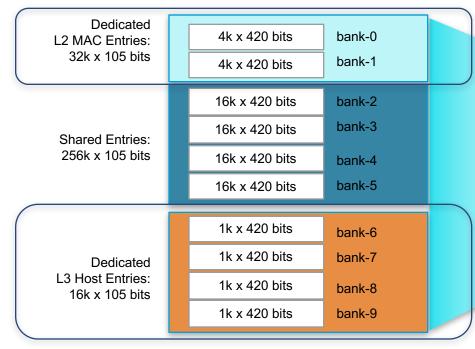


Agenda

- What's New
- Next Generation Capabilities
 - Forwarding Packet Walks
 - Forwarding Protocol Support
 - Forwarding Table Templates
 - Telemetry
 - Encryption (MACSEC and CloudSEC)
 - QoS & Buffering
- Design Impacts of 25G, 50G and 100G
- Next Gen Nexus 9000 Switch Platforms

Cisco (VC;

Nexus Forwarding Table Templates Responding to changes in End Point Density



Unikernels, also know as "virtual library operating system"

NFE (Trident 2) Unified Forwarding Table Modes

- NFE has a 16K traditional LPM TCAM table.
- Additionally NFE has the following Unified Forwarding Table for ALPM (Algorithm LPM) Mode
- NFE has dedicated adjacency table (48K)

SUPPORTED COMBINATIONS

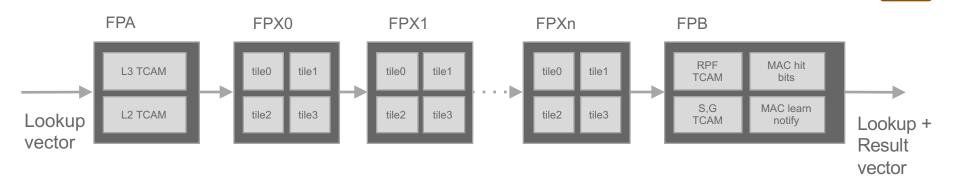
Mode	L2	L3 Hosts	LPM
0	288K	16K	0
1	224K	56K	0
2	160K	88K	0
3	96K	120K	0
4	32K	16K	128K

First Gen Nexus 9300 Forwarding Templates

N9k-1(config)# system routing max-mode 13
Warning: The command will take effect after next reload.
Note: This requires copy running-config to startup-config before switch reload.
N9k-1#

	Nexus 9300				
	Default	Maximum Layer-3 Mode			
LPM Routes	16K	128K			
IP Host Entries	120K (208K protocol learned IPv4 host routes)	16K			
MAC Address Entries	96K	32K			
Multicast Routes	32K* (hardware capable of 72K)	8K*			
Multicast Fan Outs	8K (no vPC)	8K (no vPC)			
IGMP Snooping Groups	32K* (hardware capable of 72K)	8K*			

http://www.cisco.com/c/dam/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-736548.pdf



First Gen Nexus 9300 Forwarding Templates

	Switch CLI	T2 BCM-shell
MAC Table	show mac address-table count	I2 show
IP Host Table	RIB: show ip route sum Show ip route FIB: sh forwarding route summary mod <#> sh forwarding route	I3 I3table show [on LC] n9k# bcm-shell mod 1 "I3 I3table show" count
IP LPM Table	RIB: show ip route sum show ip route FIB: show forwarding route sum mod <#> show forwarding route	I3 defip show [on FM] n9k# bcm-shell mod 22 "I3 defip show" count
egress next-hop table		I3 egress show [on both LC and FM] n9k# bcm-shell mod 1 "I3 egress show" count

BRKDCT-3101 - Nexus 9000 (Standalone) Architecture Brief and Troubleshooting BRKCLD-2601 - Layer 3 Forwarding and Troubleshooting Deep Dive on Nexus 9000 BRKDCT-3640

Nexus 9000 2nd Generation Templates Tile Based Forwarding Tables

- Improve flexibility by breaking the lookup table into small re-usable portions, "tiles"
- Chain lookups through the "tiles" allocated to the specific forwarding entry type
 - IP LPM, IP Host, ECMP, Adjacency, MAC, Multicast, Policy Entry
 - e.g. Network Prefix chained to ECMP lookup chained to Adjacency chained to MAC
- Re-allocation of forwarding table allows maximised utilisation for each node in the network
 - Templates will be supported initially

iliiilii cisco

ASE-2

cisco ASE-3

adradas

CISCO

LSE

Forwarding Table Compression

- Eliminating repetitive information from forwarding table. Increased table scale with same amount of SRA. ۰ Effectively compress forwarding table entries.
- Applicable for IPv4 host, IPv4 LPM routes and IPv6 /64 LPM routes

Destination IP	Next_hop		Pivot Entry		TRIE E	ntry	Next_Hop
			100.1.1.0/29		.1		2.2.2.2
100.1.1 <mark>.</mark> 1/32	2.2.2.2		100.1.1.0/20		.2		2.2.2.2
100.1.1 <mark>.</mark> 2/32	2.2.2.2				.3		2.2.2.2
100.1.1. <mark>3/32</mark>	2.2.2.2						
100.1.1.4/32	2.2.2.2				.4		2.2.2.2
100.1.1.5/32	2.2.2.2		100.1.1.0/29		.5		2.2.2.2
Common Informati	ion that can be eliminate	ed .0 .	.1.2.3.4.5.6.	7	Able to	pack me an	ed per entry more entrie nount of
Cisco (ive!			BRKDCT-3640 ©	2017 Cisco	and/or its affiliates. All	rights reserve	ed. Cisco Public 59

N9300-EX Forwarding Table Templates Examples

- Initial template supporting for standalone
- ACI Support for Templates with 3.0 release (Q3CY17)

Sample template 1

Table Type	IPv4 Hosts	IPv4 LPM	IPv6 Hosts	IPv6 LPM	MAC	Multicast	Next_Hop	IPv4 MPLS
Scale	700K*	700K*	2K	2K	96K	32K	32K	16K

* shared entry. IPV6 entries in TCAM and are shared

Sample template 2: High IPv4 Host route and IPv4 LPM Scale with IPv6 entries

Table Type	IPv4 Hosts	IPv4 LPM	IPv6 Hosts	IPv6 LPM	MAC	Multicast	Next_hop	IPv4 MPLS
Scale	640K*	640K*	16K	2K	96K	32K	32K	16K

* shared entry. IPv6 LPM entries in TCAM

Agenda

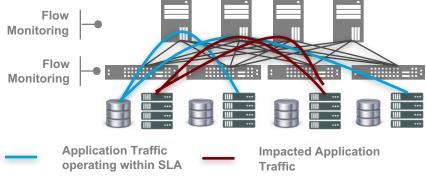
- What's New
- Next Generation Capabilities
 - Forwarding Packet Walks
 - Forwarding Protocol Support
 - Forwarding Table Templates
 - Telemetry
 - Encryption (MACSEC and CloudSEC)
 - QoS & Buffering
- Design Impacts of 25G, 50G and 100G
- Next Gen Nexus 9000 Switch Platforms

Cisco (VC;

Fabric Wide Troubleshooting Real Time Monitoring, Debugging and Analysis

Granular Fabric Wide Flow Monitoring Delivering Diagnostic Correlation "Tetration Analytics"

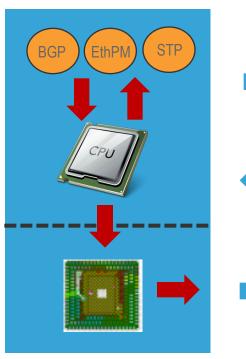
Debug


Understand 'what' and 'where' for drops and determine application impact

Monitor

Track Latency (avg/min/max), buffer utilisation, network events

Analyse

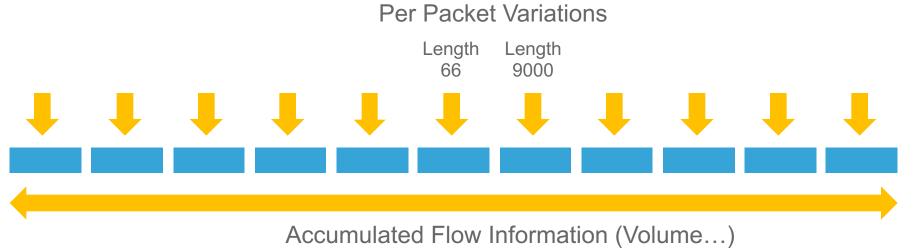

Specific events and suggest potential solution (e.g. trigger automatic rollback)

Improving the Efficiency of Accessing HW state Direct Export of the Hardware State

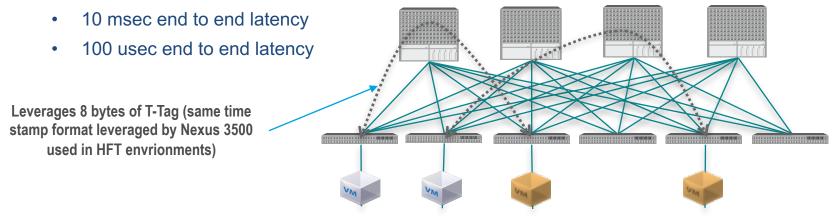
Monitor SW State (polled, timer driven, on demand, ...)

Configure Desired Triggers (Events, Flows, ...)

CPU sources the SW Telemetry Data (everything not in the HW export)

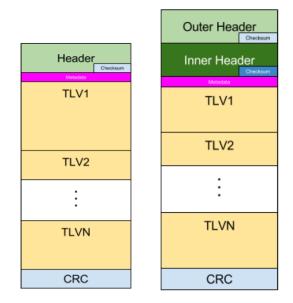

Configure Required Telemetry (Process State, Flow Cache, Events, SSX)

ASIC Directly Transmits HW Telemetry Data (Timer and Event Triggers)


Real-time Flow Sensors ASE-3 & LSE (the 'X' in the 9200-X and 9300-X)

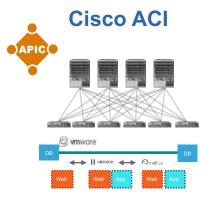
- Granular flow information
 - Per flow statistics
 - Per packet visibility

Latency Measurements LSE


- PTP based network latency metrics will be supported with ACI 2.3 release (Q2CY17)
 - Per Port Average Latency & Variance
 - Per Port 99% Latency (99% of all packets have recorded latency less than this value)
 - Supported with Multi-Pod
 - Two modes with different degrees of granularity

Real-time Hardware Telemetry ASE-4 & LSE-2

- Streams ASIC-level statistics to one or more collectors
- User defines which statistics, how often, and to which collector(s) using which encapsulation(s), should be streamed
 - Could provide predefined frequency and 'statistics sets' (interface stats, ACL stats, etc.) – user just specifies collector
 - Or, all configuration options can be exposed to end user (JSON-type definition file) – assumes we publish full list of supported statistics

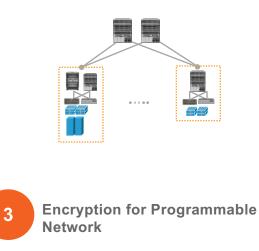

Agenda

- What's New
- Next Generation Capabilities
 - Forwarding Packet Walks
 - Forwarding Protocol Support
 - Forwarding Table Templates
 - Telemetry
 - Encryption (MACSEC and CloudSEC)
 - QoS & Buffering
- Design Impacts of 25G, 50G and 100G
- Next Gen Nexus 9000 Switch Platforms

Cisco (VC;

ACI and Nexus 9k Standalone MACSEC PHY HW Encryption Capability

2



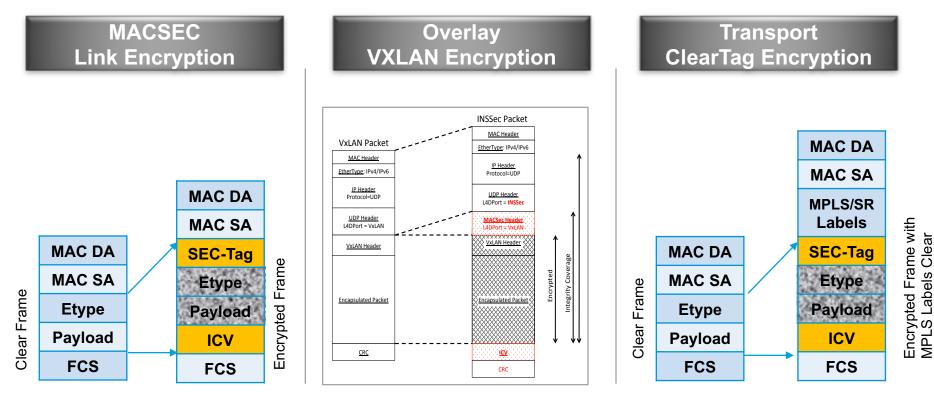
Programmable Fabric

Encryption for Programmable

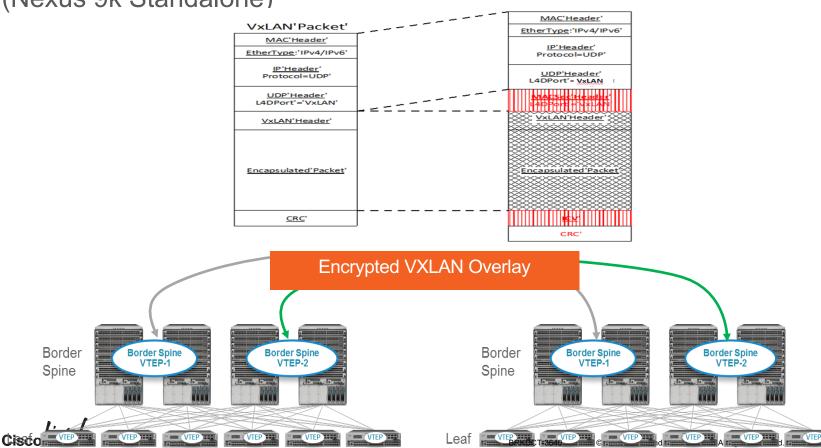
Programmable Network

Goal: Solve Encryption for All 3 Usecases

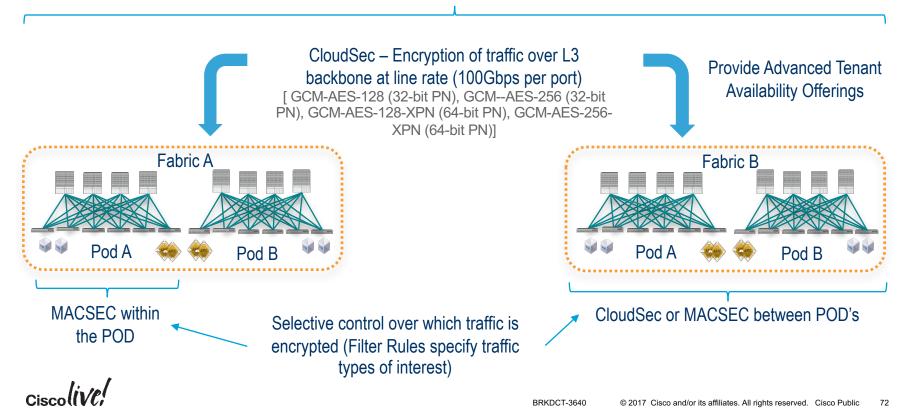
Fabric


ACI and Nexus 9k Standalone MACSEC PHY HW Encryption Capability

- Breakout for 100GE/40GE/10GE
- IEEE Compliant 802.1AE,bn,bw,cg
- Security Ciphers Suites:
 - GCM-AES-128 (32-bit PN)
 - GCM--AES-256 (32-bit PN)
 - GCM-AES-128-XPN (64-bit PN)
 - GCM-AES-256-XPN (64-bit PN)
- Key Exchange Protocol
 - MKA (IEEE Standard)
 - PSKs
- FIPS 140-2 Certified (Planning)


- MACSEC HW Capability:
 - Link MACSEC (Underlay)
 - INS-SEC (ie. VXLAN Overlay Encryption)
 - ClearTag (MPLS, Segment Routing, VPN, EVPN support, L2 encap)
- 128 Security Associations per 100G
- Man in Middle Attack protection per SA replay window checking over the full range
- ECC protection on all memories

MACSEC Frame Format for: Link, VXLAN and ClearTag Encryption


Ciscolive,

VXLAN Encryption (Nexus 9k Standalone)

ACI End to End Encryption Secure Communications for all traffic

Scope of Encryption

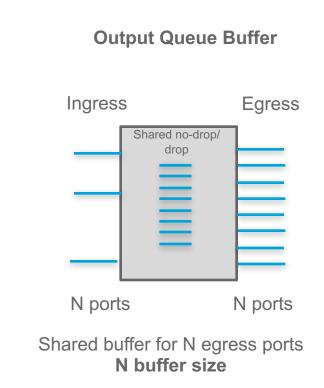
Agenda

- What's New
- Next Generation Capabilities
 - Forwarding Packet Walks
 - Forwarding Protocol Support
 - Forwarding Table Templates
 - Telemetry
 - Encryption (MACSEC and CloudSEC)
 - QoS & Buffering
- Design Impacts of 25G, 50G and 100G
- Next Gen Nexus 9000 Switch Platforms

Cisco (VC;

Nexus 9000 QoS and Buffering Shared Memory & Egress Queuing

Cat4900 – Shared Memory Egress buffering Nexus 5x00 – VoQ Ingress Buffering Nexus 9200/9300 Shared Memory Egress buffering



Cat6500 – Egress Buffering Nexus 7x00 – VoQ Ingress Buffering Nexus 9000 Egress Buffering

Nexus 9000 QoS and Buffering VoQ vs. Output Queue Design

VOQ Virtual Output Queue Ingress Egress N ports N ports Input buffer for every egress port NxN buffer size

Ciscolive

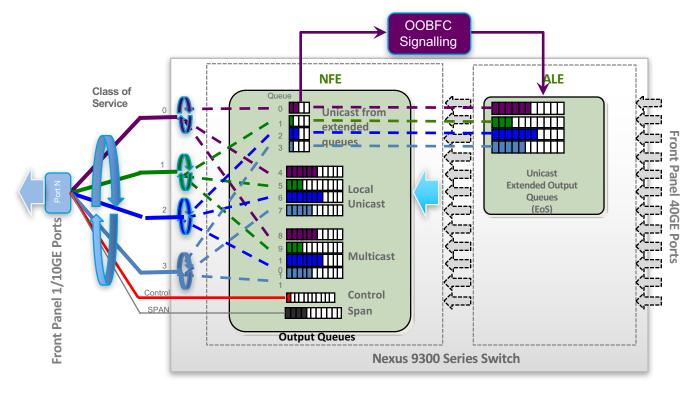
Nexus 9000 QoS and Buffering NX-OS QoS

Ingress QoS Classification

- Policy-map type qos)
- Match on CoS/ IP Precedence/ DSCP /ACL
- Set qos-group
- Remark CoS/ IP Precedence/ DSCP
- Ingress policing

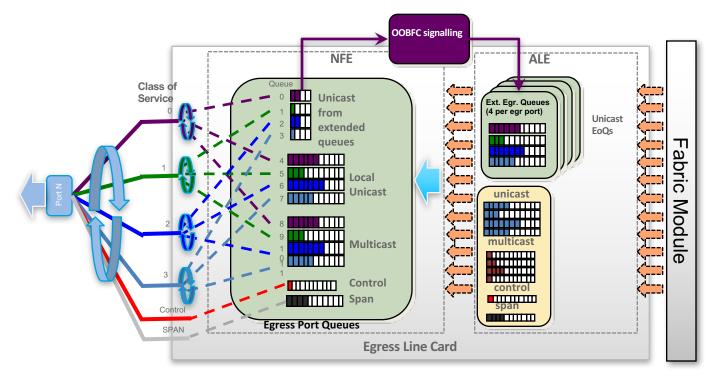
Network-QoS

- Policy-map type network-qos
- Match on qos-group
- Enable PFC/ no drop class

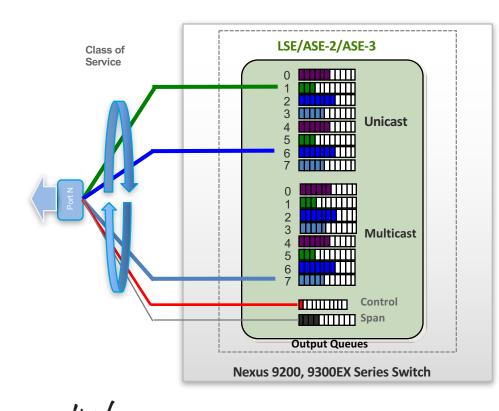

Egress Queuing and Shaping

- Policy-map type queueing
- 8 user-defined classes based on qos-group (8 unicast + 8 multicast)
- 1 control class for CPU and 1 class for SPAN traffic
- 7 no-drop classes

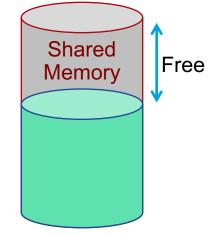
End-to-End QoS Implementation and Operation with Cisco Nexus Switches


Session ID: BRKDCT-3346 Cisco(IVC

Queuing & Scheduling on First Gen Nexus 9300 Switches 4 Unicast + 4 Multicast + 2 Services Queues per Port

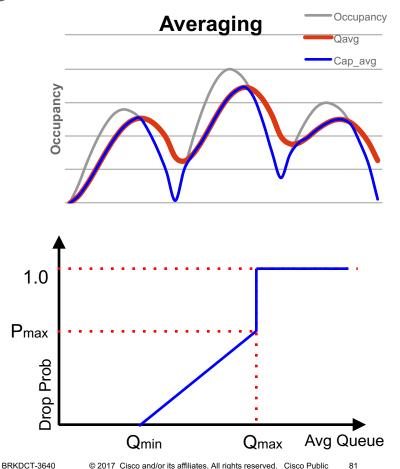

Ciscolive,

Queuing & Scheduling on First Gen Nexus 9000 Switches 4 Unicast + 4 Multicast + 2 Services Queues per Port


Queuing & Scheduling on 2nd Gen Nexus 9000 Switches 8 Unicast + 8 Multicast + 2 Services Queues per Port

- For each port up to 18 distinct queues could be scheduled
 - CPU queue
 - 8 unicast queue
 - 8 multicast queue
 - SPAN queue
- The CPU queue has strict priority
- The SPAN queue is best effort and lowest priority
- The scheduling between the 16 user queues is configurable
- By default the selection between unicast and multicast is 50-50 DWRR in each group and then among the groups based on DWRR with each group receiving 12.5 %
- Any number of queues or groups could be strict priority (SP), among SP groups the lowest queue number wins

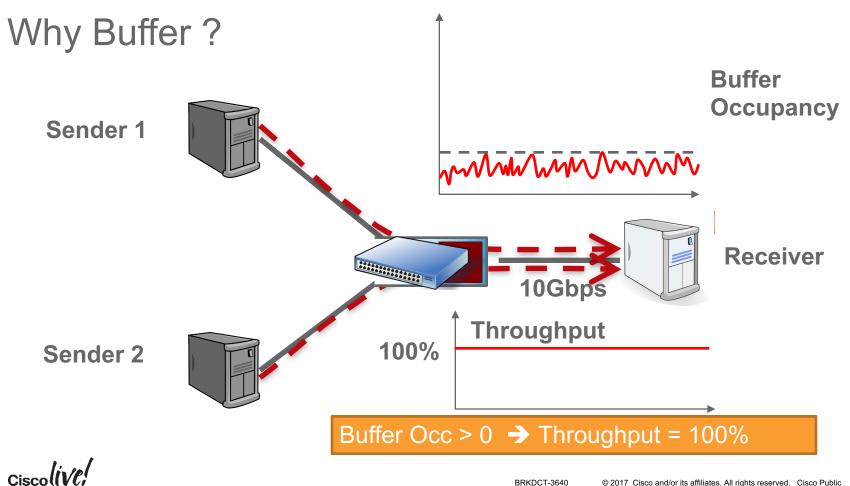
Shared Memory Buffering Dynamic Buffer Protection (DBP)

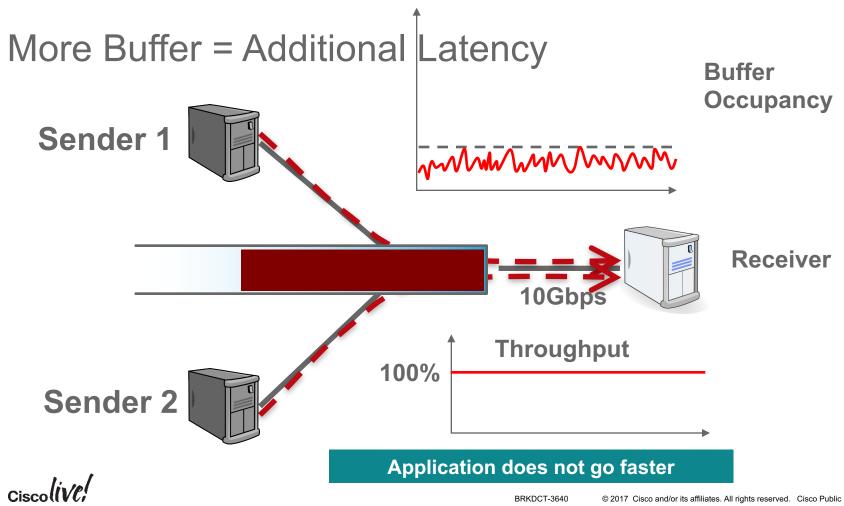

- Requirement
 - In a shared memory switch it is necessary to prevent any output queue from taking more than its faire share of the buffer when its output is oversubscribed
 - It can take more than its fair share to handle burst if the output is not oversubscribed.
- Basic Algorithm (Deployed on Merchant and First Gen Nexus 9000)
 - The algorithm defines a dynamic max threshold for each queues sharing the same buffer, if the queue length is less than threshold packets are accepted otherwise packet are discarded
 - The dynamic threshold is calculated by multiplying the amount of free memory by a parameter Alpha
- Enhanced Algorithm (Deployed on 2nd Generation Nexus 9000)
 - The algorithm is expanded to include the concept of pool (class of service) and it is also adapted to multicast traffic.
 - The dynamic buffer algorithm is extended to allocate memory among buffer
 - pools then to allocate among queues within each pool

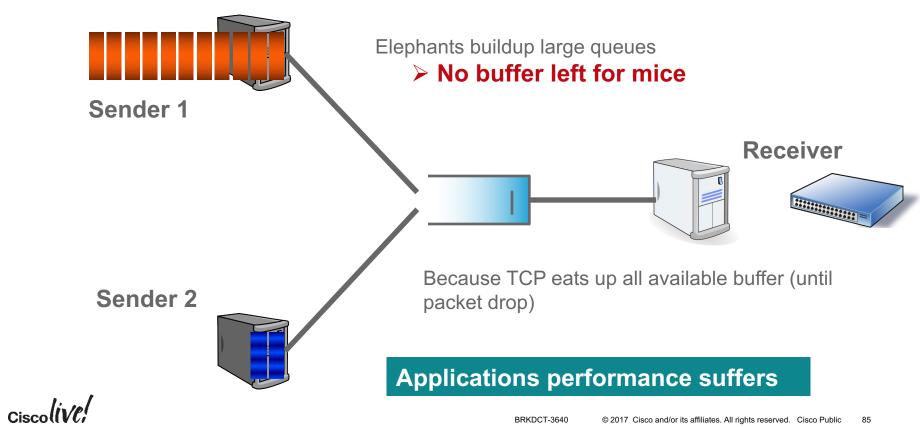
Nexus 9000 QoS and Buffering Active Queue Management (AQM)

AQM

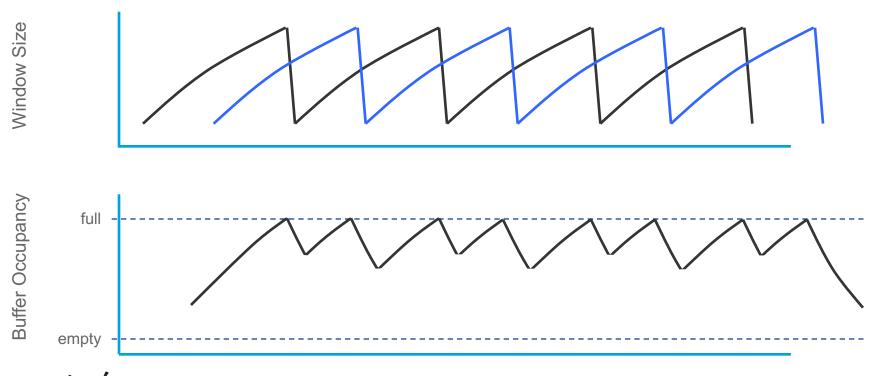
- Mode and parameters defined by profiles mapped to queues
- Averaging timer per profile
- Drop/ECN-mark per profile
- WRED
 - Each queue mapped to a profile
 - Averaging with Cap_Avg
- AFD
 - Drop/mark only elephant flows
 - Arrival rate measured by ETRAP
 - "Fair" rate computed using a continuous feedback loop
- ECN
 - Mark/drop ECN Capable flows
- ciscolive. Ignore/drop non-ECN capable flows


Buffering Data Centre Two Requirements for Buffers


- Long Lived TCP flows
 - Maximise the utilisation of the available network capacity (ensure links are able to run at line rate)
 - Window Size Increases to probe the capacity of the network
 - Delay x Bandwidth Product (C x RTT)*
 - e.g if your network had 100 msec of latency with 10G interface, 125KBytes is required to keep the interface running at maximum capacity (line rate)
- Incast Scenarios
 - Headroom, how much space is available to absorb the burst of traffic (excess beyond the buffer required by long lived TCP flows)

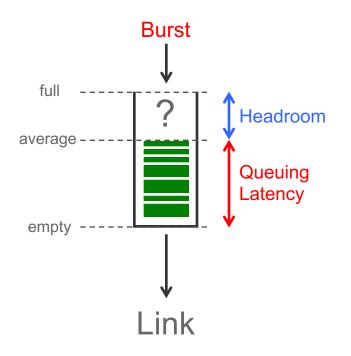

Buffer Available for Incast Burst

Buffer Required for Maximising Network Utilisation



Elephants Waste Buffer

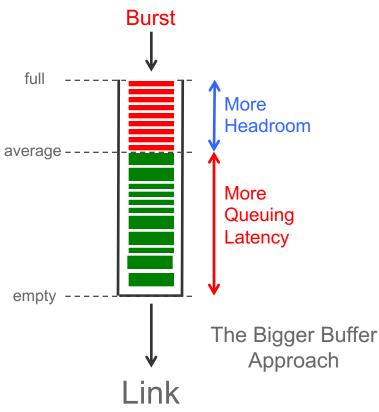
Multiple TCP Flows in Reality


Long Lived TCP Flows

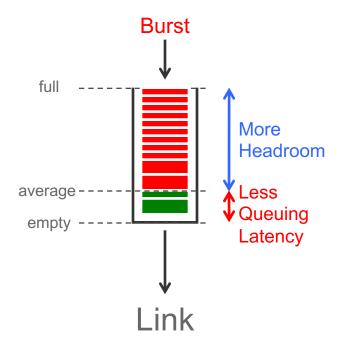
- Rule of thumb is for one TCP flow, $B = C \times RTT$
- But, typical link carries 10's 1000s of flows and it turns out that the actual buffer requirement is less than this

Required buffer is
$$\frac{C \times RTT}{\sqrt{n}}$$
 instead of $C \times RTT$

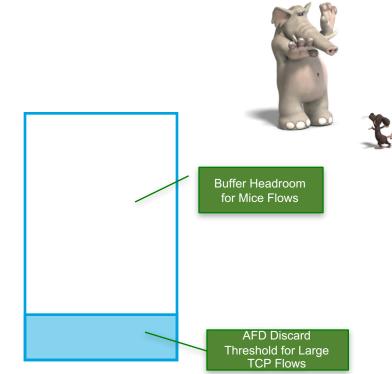
- Proven by theory and experiments in real operational networks
- For example, see Beheshti et al. 2008: "Experimental Study of Router Buffer Sizing"

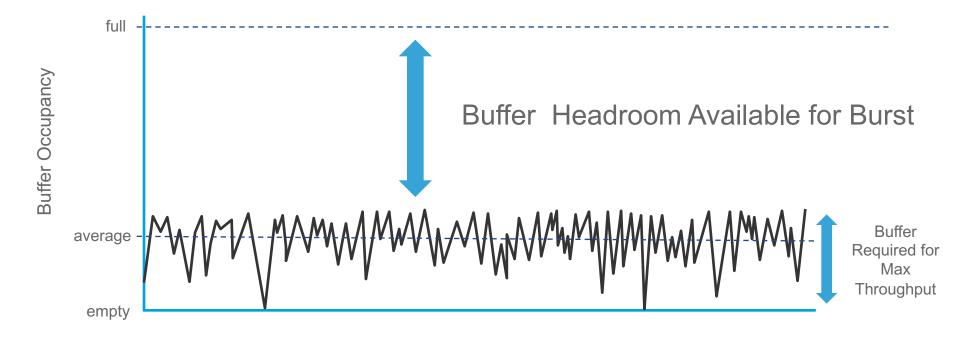

Micro-bursts Need Headroom Where Does it Come From?

Micro-bursts Need Headroom Where Does it Come From?


- Larger Buffer can increase the burst headroom but
 - Increases queuing latency which decreases application performance
- You can still have large flows fill up the entire buffer resulting in no increase in burst headroom
 - Impacts application performance

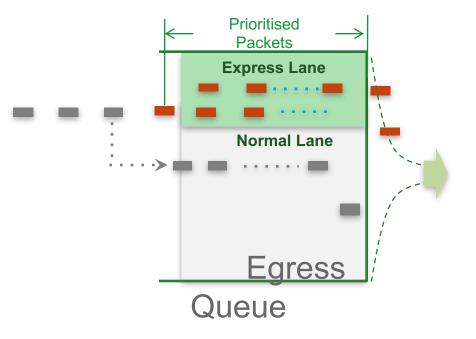
We Want the Best of Both Worlds


- Maximise the amount of buffer always available for bursts
- Minimise the latency for high throughput flows
- Better application performance for both types of traffic

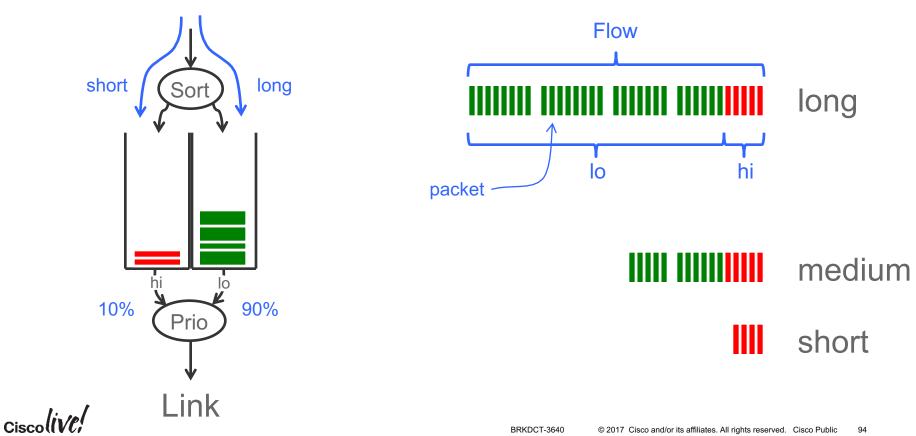


Innovation Gives us the Best of Both Worlds AFD & DPP

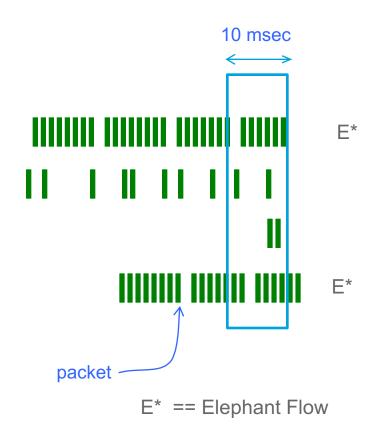
- How to minimise the buffer used by long lived flows while ensuring maximal use of network capacity
 - Approximate Fair Drop (AFD) for active queue management
 - Computes a "fair" rate for each flow at the output queue and dropping flows in proportion to the amount they exceed the approximated fair rate
- How to ensure the incast flows are serviced as fast as possible to keep the buffer available
- Dynamic Packet (Flow) Prioritisation (DPP)


AFD Increases Headroom, Reduces Latency

Ciscolive


DPP (Dynamic Packet Prioritisation)

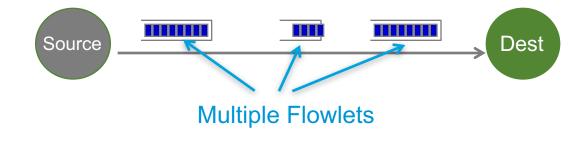
- Separate flows into short and long
- Put short flows in high priority queue
- Put long flows in low priority queue
- The 10% of bytes that are in short flows means high priority queue will be empty
- Prioritisation guarantees packet order
- We want to prevent the drops of the mice, the incast and burst traffic



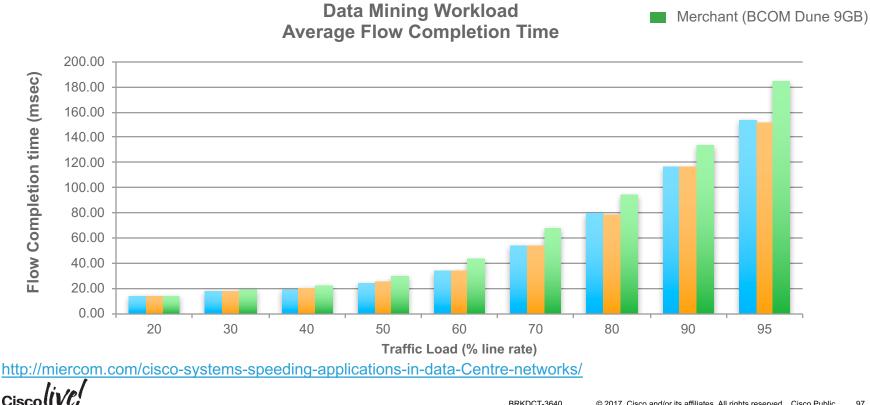
All Flows are Short Until They Become Long

Elephant Trap

- Mechanism to identify large volume flows
 - Identified based on 5-tuple
- Elephant trap threshold is byte-count-based.
 - When received packets in a flow exceeds the number of bytes specified by the threshold, the flow is considered an elephant flow
 - Only elephant flows are submitted to AFD dropping algorithm. Mice flows are protected and not subject to AFD dropping
 - Arriving data rate is measured on the ingress, and compared against a calculated fair rate on the egress port to decide dropping capability



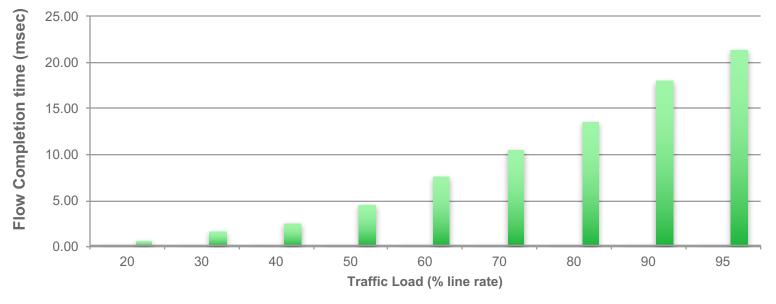
DPP Looks for Any Burst TCP, UDP, Multicast, ..


A Long-lived TCP Session 📫 An Elephant Flow

- The elephant trap and DPP algorithm are **not** tracking only TCP sessions
- The algorithm is 5-tuple based which means it can find TCP, UDP, Unicast and Multicast bursts
 - A very long lived session that is quiet and then bursts will be prioritised for that burst
 - Traffic arriving due to a link failure will be prioritised, etc ...

One Long-lived Session

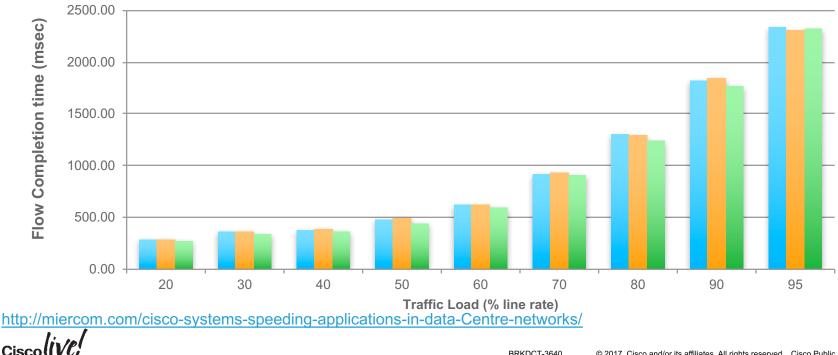
Better Application Performance in an Incast Environment Nexus 92160



Nexus 9272Q

Better Application Performance in an Incast Environment

Data Mining Workload Under 100KB Flow Completion Time


http://miercom.com/cisco-systems-speeding-applications-in-data-Centre-networks/

Ciscolive

Better Application Performance in an Incast Environment

Data Mining Workload > 10MB Flow Completion Time

So Why Are You Now Shipping a Big Buffer Switch?

- There are a few specific environments, synchronised UDP bursts, where latency and throughput are much less important than loss, e.g. need to ensure that every trading customer gets the pricing update
- Some customers just want it
- The majority of the Internet and Cloud environments are moving beyond the older requirements

BBR: Congestion-Based Congestion Control Latest Google Research into TCP Congestion Control

 $\mathbf{\Phi}$

By all accounts, today's Internet is not moving data as well as it should. Most of the world's cellular users experience delays of seconds to minutes; public Wi-Fi in airports and conference venues is often worse. Physics and climate researchers need to exchange petabytes of data with global collaborators but find their carefully engineered multi-Gbps infrastructure often delivers at only a few Mbps over intercontinental distances.⁶

These problems result from a design choice made when TCP congestion control was created in the 1980s—interpreting packet loss as "congestion."¹³ This equivalence was true at the time but was because of technology limitations, not first principles. As

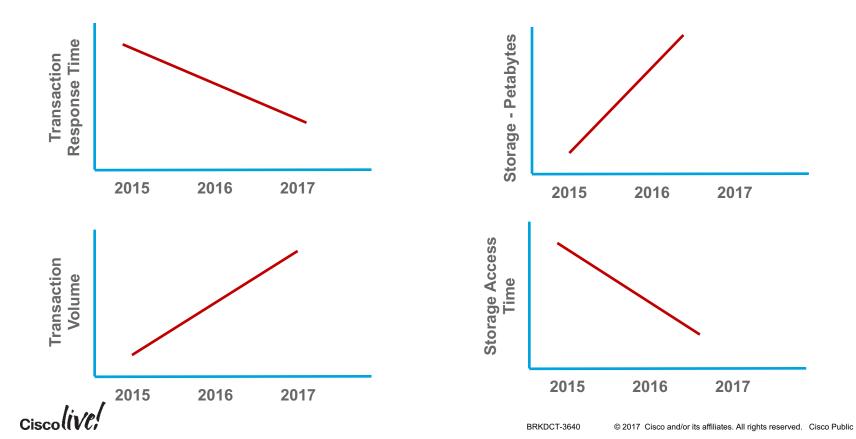
NICs (network interface controllers) evolved from Mbps to Gbps and memory chips from KB to GB, the relationship between packet loss and congestion became more tenuous.

http://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext

Congestion Control for Large-Scale RDMA Deployments

Abstract Related Info

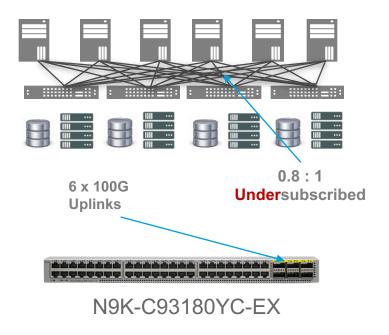
Modern datacenter applications demand high throughput (40Gbps) and ultra-low latency (< 10 microsecond per hop) from the network, with low CPU overhead. Standard TCP/IP stacks cannot meet these requirements, but Remote Direct Memory Access (RDMA) can. On IProuted datacenter networks, RDMA is deployed using RoCEv2 protocol, which relies on Priority-based Flow Control (PFC) to enable a drop-free network. However, PFC can lead to poor application performance due to problems like head-of-line blocking and unfairness. To alleviates these problems, we introduce DCQCN, an end-to-end congestion control scheme for RoCEv2. To optimize DCQCN performance, we build a fluid model, and provide guidelines for tuning switch buffer thresholds, and other protocol parameters. Using a 3-tier Clos network testbed, we show that DCQCN dramatically improves throughput and fairness of RoCEv2 RDMA traffic. DCQCN is implemented in Mellanox NICs, and is being deployed in Microsoft's datacenters.

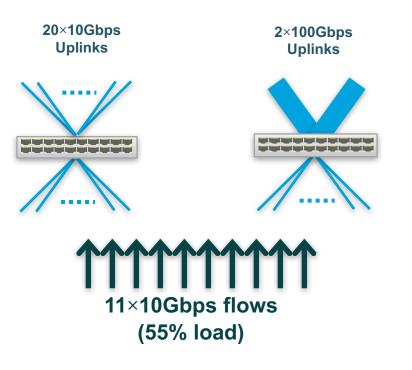

https://www.microsoft.com/en-us/research/publication/congestion-control-for-large-scale-rdma-deployments/

Agenda

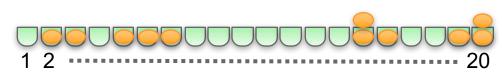
- What's New
- Next Generation Capabilities
 - Forwarding, QoS, Telemetry
- Design Impacts of 25G, 50G and 100G
 - 100G Design Thoughts
 - 40/100G Optics
 - 25/50G
- Next Gen Nexus 9000 Switch Platforms
 - Nexus 9200/9300 (Fixed)
 - Nexus 9500 (Modular)

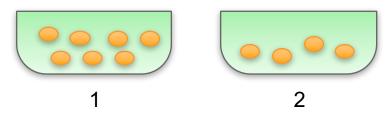
Cisco (iVC;


Design for Optimal Capacity What does 25/50/100G mean


104

Design for Optimal Capacity What does 100G mean


- You do not need to 'and' should not be designing a network that is capacity constrained
 - Capacity has a 'very' different cost point than it did even as recently as last year
- Design for the Optimal Capacity Requirements
 - Bandwidth solves problems, buffering at best masks them
- Consider "undersubscription"
 - It is now possible


Design for Optimal Capacity What does 100G mean

Prob of 100% throughput = 3.27%

Prob of 100% throughput = 99.95%

Ciscolive!

Agenda

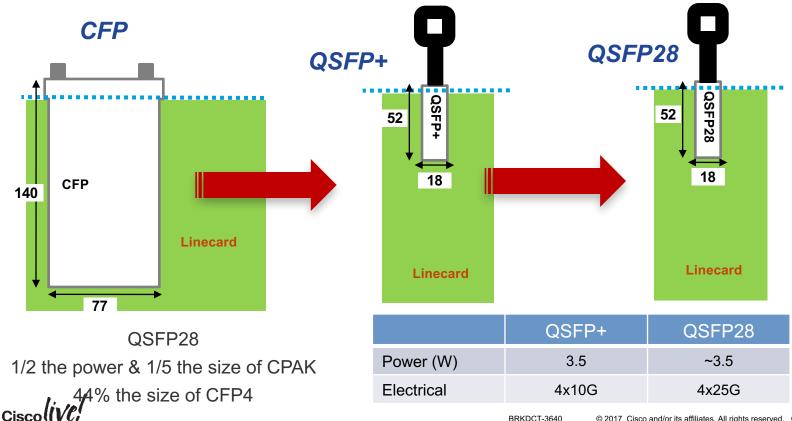
- What's New
- Next Generation Capabilities
 - Forwarding, QoS, Telemetry
- Design Impacts of 25G, 50G and 100G
 - 100G Design Thoughts
 - 40/100G Optics
 - 25/50G
- Next Gen Nexus 9000 Switch Platforms
 - Nexus 9200/9300 (Fixed)
 - Nexus 9500 (Modular)

Cisco (IVC;

Optics Pluggable Multispeed Interfaces SFP & QSFP

Pluggable Options

- 100M SFP
- 1G SFP
- 10G SFP+, Twinax, AOC
- 25G SFP+, Twinax, AOC

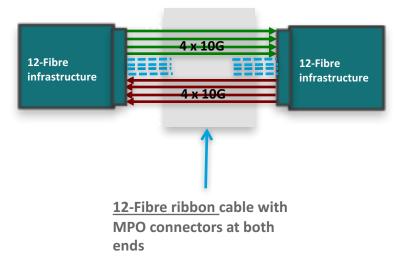

Pluggable Options

QSFP

- 100M SFP (via QSA)
- 1G SFP (via QSA)
- 10G SFP+, Twinax, AOC (via QSA)
- 25G SFP+, Twinax, AOC (via SLIC)
- 40G QSFP, Twinax, AOC
- 50G Twinax, AOC (via SLIC)
- 100G QSFP, Twinax, AOC

Next Generation Packages for 40/100G QSFP+ & QSFP28

Support for 40G Optics QSFP+



QSFP-BIDI vs. QSFP-40G-SR4

Higher cost to upgrade from 10G to 40G due to 12-Fibre infrastructure

TX/RX 2 x 20G Duplex Multimode Multimode Fibre 2 x 20G TX/RX

QSFP-BIDI

Duplex

Fibre

Duplex multimode fibre with Duplex LC connectors at both ends

Use of duplex multimode fibre lowers cost of upgrading from 10G to 40G by leveraging existing 10G multimode infrastructure

Support for 40G Optics

QSFP+	Fibre	Connectors	Distance
QSFP-40G-SR4	MMF	MPO	100m
QSFP-40G-SR4-S	MMF	MPO	150m
QSFP-40G-CSR4	MMF	MPO	400m
QSFP-40GE-LR4	SMF	LC pair	10km
QSFP-40G-LR4	SMF	LC pair	10km
QSFP-40G-ER4	SMF	LC pair	40km
WSP-Q40GLR4L	SMF	LC pair	2km
QSFP-40G-LR4-S	SMF	LC pair	10km

Support for 100G Optics QSFP28

1/2/3/5m, Copper

CU QSFP28

Built-in Cable/Optics

1/2/3/5/7/10/15/20 m, Copper AOC QSFP28 Built-in Cable/Optics

Support for 100G Optics

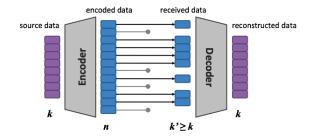
QSFP28	Fibre	Connectors	Distance
SR4	MMF	MPO-MTP12	Up to 100m
LR4	SMF	LC pair	Up to 10km
SM SR	SMF	LC pair	Up to 500m
CWDM4	SMF	LC pair	Up to 2km
CU 1/2/3/5 m	Copper	Build-in QSFP28	Up to 5m
AOC 1/2/3/5/10/15/20m	Copper	Build-in QSFP28	Up to 20m

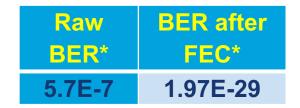
Agenda

- What's New
- Next Generation Capabilities
 - Forwarding, QoS, Telemetry
- Design Impacts of 25G, 50G and 100G
 - 100G Design Thoughts
 - 40/100G Optics
 - 25/50G
- Next Gen Nexus 9000 Switch Platforms
 - Nexus 9200/9300 (Fixed)
 - Nexus 9500 (Modular)

Cisco (IVC;

25/50G Ethernet Standards


	Consortium	IEEE	Cisco TMG Cables*	
Distance	Passive: 1,2,3 meter	Passive: 1,2,3,5 meter Optics: SR	AOC cables: 1,2,3,5,7,10M (Shipping Jan CY17')	
Deployment	Within Rack	Across Rack	Within/Across Rack	
Supporting Platform	N9200, N9300-EX N3200, X9700-EX	Roadmap N9300-FX X9700-FX, X97160YC-EX	N9200, N9300-EX, N3200, X9700-EX, N9300-FX	
Forward Error Correction	3m needs FC FEC	3m needs FC FEC >3m need RS FEC	Can work with either FC FEC or RS FEC	
NIC (Verified)	Mellanox		NIC needs to support the same FEC mode as the switch	
NIC (Ongoing Testing)	Qlogic, BRCM, Intel			


Ciscolive!

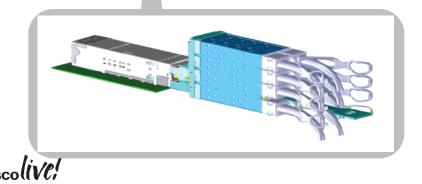
*IEEE or Consortium does not spec for AOC 1,2,3,5, 7,10 meter.

What About 25G? FEC (Forward Error Correction)

- FEC greatly reduce uncorrected errors across the media and help to extend the usable reach of those media
- FEC introduces latency penalty and depending on the distance FEC could be disabled to optimise the latency (~250 nsec)
- 25G standard support 3 modes of FEC to support different twinax cable reach
 - Clause 74 Fire code FEC: FC FEC
 - Clause 108 Reed-Solomon FEC: RS FEC
- Passive cable 1 and 2 meter does not require FEC
- Passive cable 3 meter requires FC FEC
- Passive cable more than 3 meter or 100m MMF SR optics requires RS FEC
- RS FEC introduce more latency than FC FEC

* Example of FEC improvement of realised BER with 56G PAM4 encoding

25G / 10G Backward Compatibility


- 25G Ethernet passive cable support both 10G and 25G speed
- 10G and 40G Ethernet passive cable are not designed to run at 25G Ethernet single lane

Optics		Platform
Passive Cables	1/2/3/5 meter	Nexus 92160YC-X
Active Cables	1/2/3 meter *	Nexus 92160YC-X
Breakout Cables	1/2/3 meter	Nexus 9232C Nexus 9236C Nexus 92160YCX

* Active cable greater than 3 meter requires FEC RS which is not supported on Nexus 92160YCX

Cisco QSFP-to-SFP Converters

Q1CY16

2 QSFP to 8 SFP+ 2x40G -> 8x10G/ 2x100G -> 8x 25G 2 QSFP to 4 QSFP 2x100G -> 4x 50G

Fit with 1 RU TOR switches only

Flexible conversion of ports on an as needed basis 32p 40G -> 96p 10G & 8p 40G 32p 100G -> 64p 25G & 16p 100G

32p 100G -> 48p 50G & 8p 100G

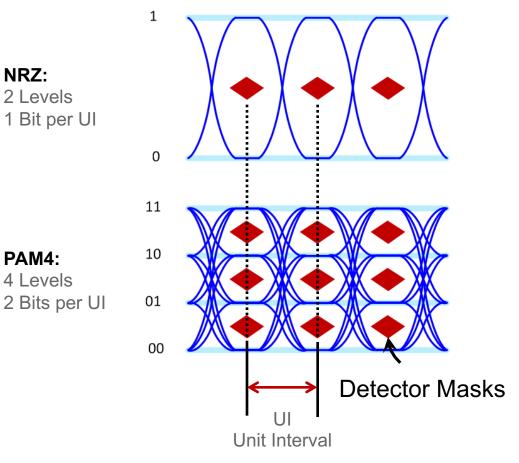
No break-out cable

Support for standard 10G/ 25G SFP and 40/50/100G QSFP

What is Next? 50/400G

Pulse Amplitude Modulation 4 Indicates the number of valid signal levels

- NRZ is the same as PAM2 ٠
- PAM3 is used in 100Base-T ٠
- PAM5 is used in 1000Base-T ٠
- PAM16 is used in 10GBase-T ٠


Higher order modulation with PAM has been used for decades to achieve higher bit rates

NRZ: 2 Levels 1 Bit per UI

PAM4:

4 Levels

Ideal Differential Eye Diagrams

What is Next? 50/400G

IO Signalling	2006-2008	2009-2012	2013-2015	2016-2017	2018-2019
Backplane	3.125G NRZ	7.5G NRZ	15G NRZ	25G NRZ	56G PAM4
Chip to Chip	156MHz DDR 3.125G NRZ	7.5G NRZ	15G NRZ	25G NRZ	56G PAM4
Chip to Module	10G NRZ	10G NRZ	25G NRZ	25G NRZ	53G PAM4
LC bandwidth	320G (oversubscribed)	480G	1.44T	3.6T	14.4T
LC feature	32x10G	48x10G	14x100G 36x40G	36x100G	36x400G

Agenda

- What's New
 - 2nd Generation Nexus 9000
 - Moore's Law and 25G SerDes
 - The new building blocks (ASE-2, ASE-3, LSE)
- Next Generation Capabilities
 - Forwarding, QoS, Telemetry
- Design Impacts of 25G, 50G and 100G
- Nexus 9000 Switch Platforms
 - Nexus 9200/9300 (Fixed)
 - Nexus 9500 (Modular)

Nexus 9300 Series Switches Portfolio First Generation

N9K-C93120TX

Nexus[®] 9372PX/ 9372TX

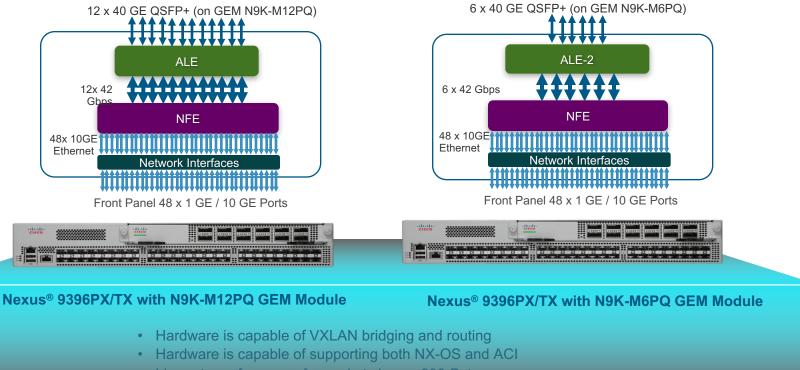
- 1 RU w/n GEM module slot
- 720Gbps
- 6-port 40 Gb QSFP+
- 48-port 1/10 Gb SFP+ on Nexus 9372PX
- 48-port 1/10 G-T on Nexus 9372TX

Nexus 9332PQ

- 1 RU w/n GEM module slot
- 1,280Gbps
- 32-port 40 Gb QSFP+

Nexus 93120TX

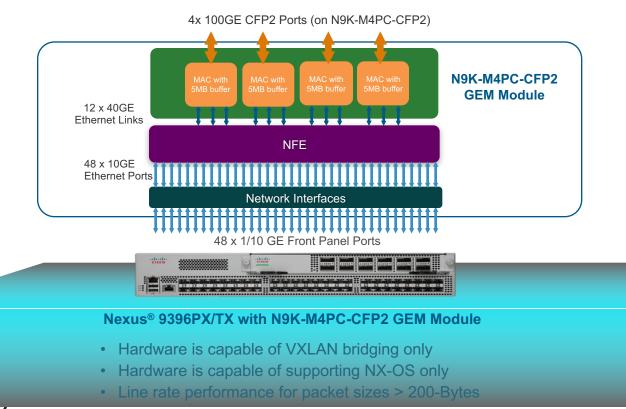
- 2 RU w/n GEM module slot
- 1200Gbps
- 6-port 40 Gb QSFP+
- 96-port 1/10 G-1


Nexus[®] 9396PX/ 9396TX

- 2 RU with 1 GEM module slot
- 960Gbps
- 48-port 1/10 Gb SFP+ on Nexus 9396PX
- 48-port 1/10 G-T on Nexus 9396TX
- 6 ports 40 Gb QSFP+ on N9K-M6PQ GEM module
- 12 ports 40 Gb QSFP+ on N9K-M12PQ GEM module
- 4 ports 100 Gb CFP2 on N9K-M4PC-CFP2 GEM module

Nexus 93128TX/ 93128PX

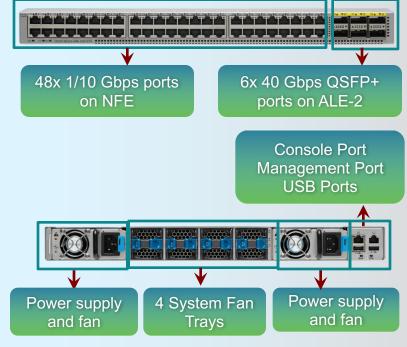
- 3 RU with 1 GEM module slot
- 1,280Gbps
- 96-port 1/10 G-T on Nexus 93128TX
- 96-port 1/10 SFP+ on Nexus 93128P
- 6 ports 40 Gb QSFP+ on N9K-M6PQ GEM module
- 8 ports 40 Gb QSFP+ on N9K-M12PQ GEM module
- 2 ports 100 Gb CFP2 on N9K-M4PC-CFP2 GEM module


First Gen Nexus 9300 Series Switch Architecture Nexus 9396PX/TX Block Diagram with N9K-M12PQ or N9K-M6PQ GEM Module

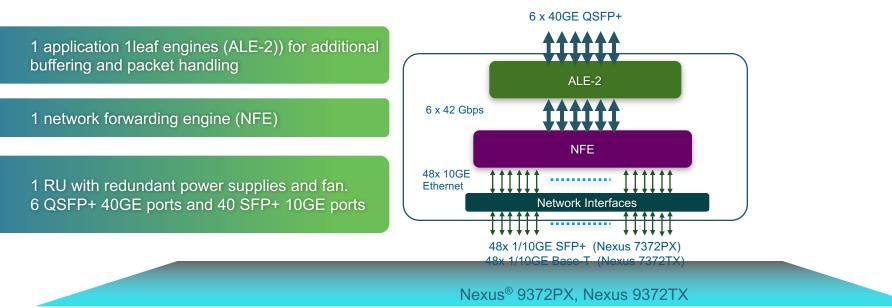
• Line rate performance for packet sizes > 200-Bytes

First Gen Nexus 9300 Series Switch Architecture Nexus 9396PX/TX Block Diagram with N9K-M4PC-CFP2 GEM Module

Ciscolive;

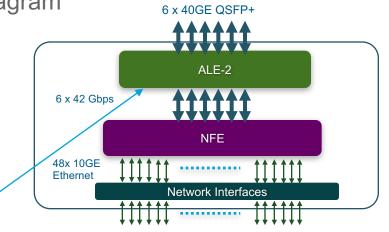

BRKDCT-3640 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 125

First Gen Nexus 9300 Series Switch Architecture


Cisco Nexus[®] 9372PX / 9372TX

- 1 RU height
- No GEM module
- 48x 1Gb SFP / 10 Gb SFP+ ports on Nexus 9372PX
- 48x 1/10 Gb Base-T ports on Nexus 9372TX
- 6x 40 Gb QSFP+ ports
- 1 100/1000baseT management port
- 1 RS232 console port
- 2 USB 2.0 ports
- Front-to-back and back-to-front airflow options
- 1+1 redundant power supply options
- 2+1 redundant fans
- Full line rate performance for all packet sizes
- VXLAN bridging and routing
- Capable of supporting both NX-OS and ACI modes

Nexus 9300 Series Switch Architecture Nexus 9372PX/ Nexus 9372TX Block Diagram


- The 6 40GE links between NFE and ALE-2 run at 42Gbps clock rate to accommodate the internal packet header.
- Hardware is capable of VXLAN bridging and routing
- Hardware is capable of supporting both NX-OS and ACI modes
- Full line rate performance for all packet sizes

Ciscolive;

Nexus 9300 'E' Series

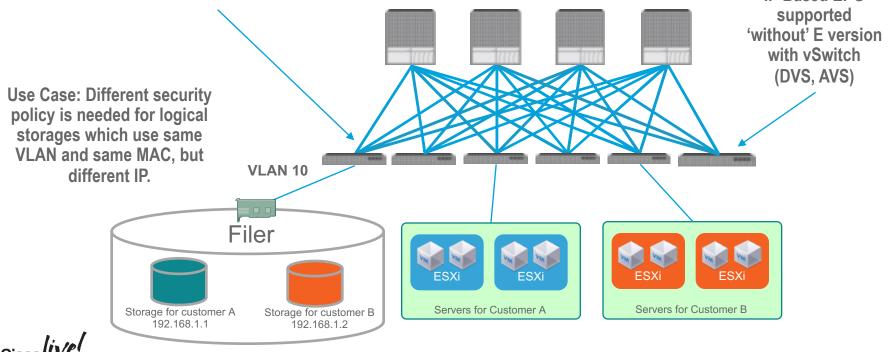
Nexus 9372PX-E/ Nexus 9372TX-E Block Diagram

- Support for IP and MAC based EPG in ACI mode for non VM's
 - Support for VM Attribute including MAC/IP is supported on multiple vSwitches without the need for the 'E' leaf
- Allows static over-ride for the class-id (EPG) in the Local Station table

48x 1/10GE SFP+ (Nexus 7372PX) 48x 1/10GE Base-T (Nexus 7372TX)

128

N9K-C9372TX Show module information:



N9K-C9372TX-E Show module information:

Nexus 9300 'E' Series - IP Based EPG

- With release 1.2(1), ACI provides IP based EPG classification on physical leaves for physical domain
- Hardware: E-series Nexus 9300 or module is required

IP Based EPG

Next Gen – 9200 & 9300EX 2nd Generation

Nexus 9300-EX

48p 10/25G SFP + 6p 40/100G QSFP Nexus 93180YC-EX

48p 1/10GT + 6p 40/100G QSFP Nexus 93108TC-EX

Dual personality – ACI and NX-OS mode

Industry's first native 25G VXLAN capable switch Flexible port configurations – 1/10/25/40/50/100G

Up to 40 MB shared buffer

Native Netflow

Nexus 9200

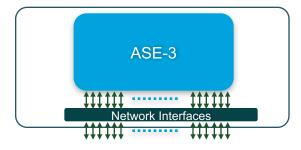
36p 40/100G QSFP Nexus 9236C

56p 40G + 8p 40/100G QSFP Nexus 92304QC

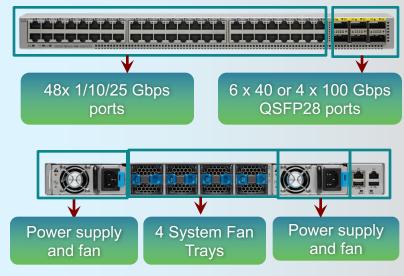
72p 40G QSFP Nexus 9272Q

48p 10/25G SFP + 4p 100G/ 6p 40G QSFP Nexus 92160YC-X

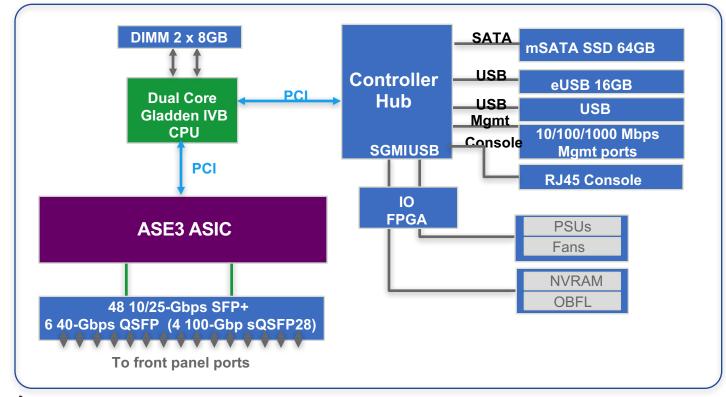
NX-OS switches


Industry's first 36p 100G 1RU switch Industry's first native 25G VXLAN capable switch Up to 30 MB shared buffer High density compact 40/100G aggregation

Nexus 92160YC-X ASE3 Based


- ASIC: ASE3
- 1 USB + 1 RS232 Serial
- 2-core CPU (Intel Ivy Bridge Gladden 1.8Ghz)
- 2MB NVRAM

Ciscolive


- 16GB DRAM + 64GB SSD
- Two Power supply (650W) 1 + 1 redundant
- Typical Power Usage
 - 10G mode : 150 W
 - 25G mode : 170 W
- Maximum Power Usage 430 W
- Four Fans 3 + 1 redundant

N9K-C92160YC-X

Nexus 92160YC-X ASE3 Based

Cisco live,

Nexus 92160 Port Configuration

• 1RU 48 Port 10/25G Fibre + 6 Port 40G/ 4 Port 100G

CLI to find the operation mode:

drvly15(config-if-range)# sh running-config | grep portmode hardware profile portmode 48x25G+2x100G+4x40G

6p QSFP

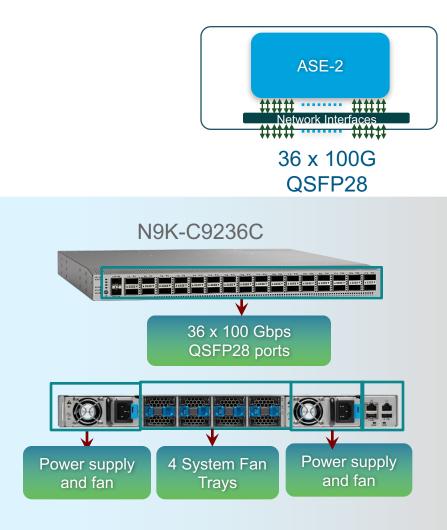
92160# sh mod

 Mod Ports
 Module-Type
 Model
 Status

 1
 54
 48x10/25G+(4x40G+2x100G or 4x100G) Et N9K-C92160YC

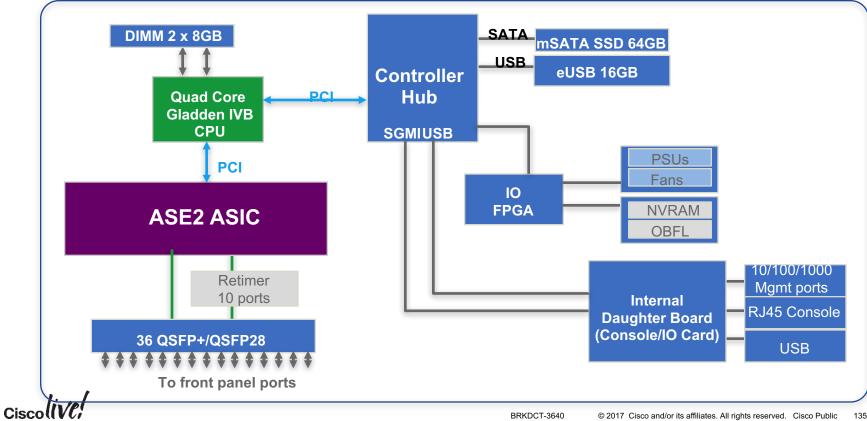
- Breakout modes
- There are two breakout modes
 - 40G to 4x10G breakout.

48p 10G/25G Fibre


- This breaks out 40G ports into 4 X 10G ports
- Cli command
 - interface breakout module 1 port <x> map 10g-4x
- 100G to 4x25G breakout.
 - This breaks out 100G ports into 4 X 25G ports
 - Cli command
 - interface breakout module 1 port <x> map 25g-4x

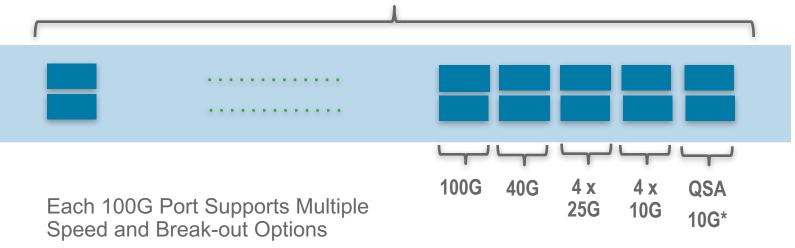
.

active *


Nexus 9236C ASE2 Based

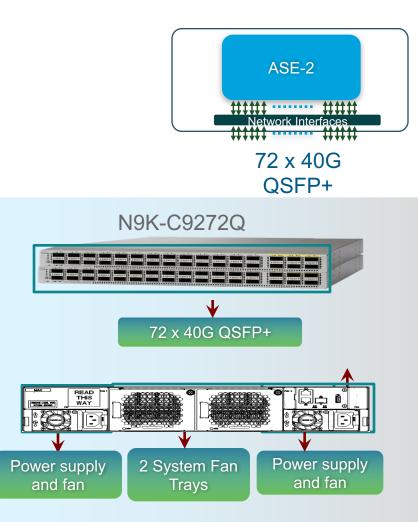
- ASIC: ASE2
- 4-core CPU (Intel Ivy Bridge Gladden 4 core at 1.8 GHz)
- 16GB DRAM + 64GB SSD
- 2MB NVRAM
- Two Power supply (1200W) 1 + 1 redundant
 - Typical Power Usage 375 W
 - Maximum Power Usage 640 W
- Two Fans 3 + 1 redundant
- 36 x 40/100G ports
- 144 10/25G ports (when all ports in breakout mode

Ciscolive!

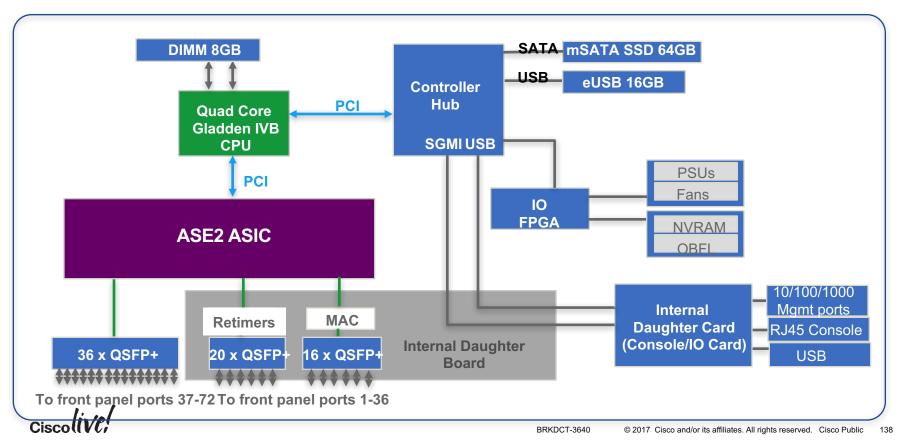

Nexus 9236C **ASE2** Based

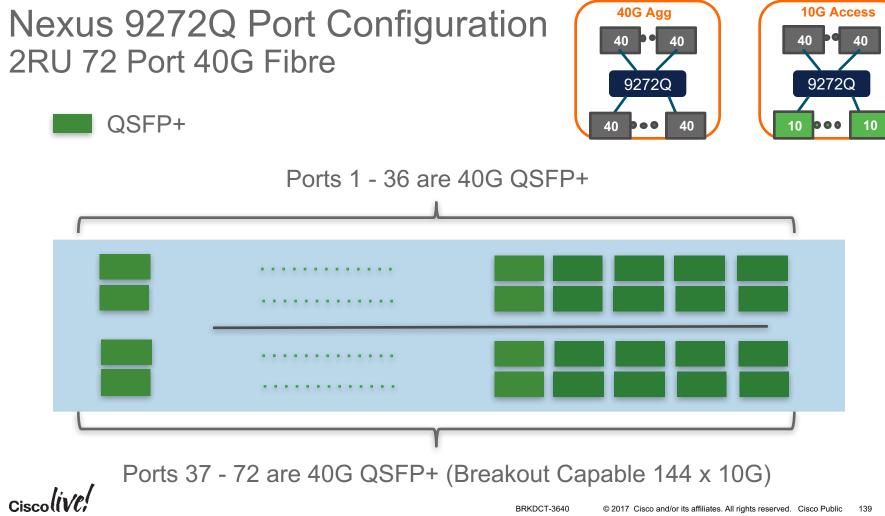
Nexus 9236C Port Configuration 1 RU 36 Port 100G Fibre

Ports 1 - 36 are 100G QSFP28 (Breakout Capable)

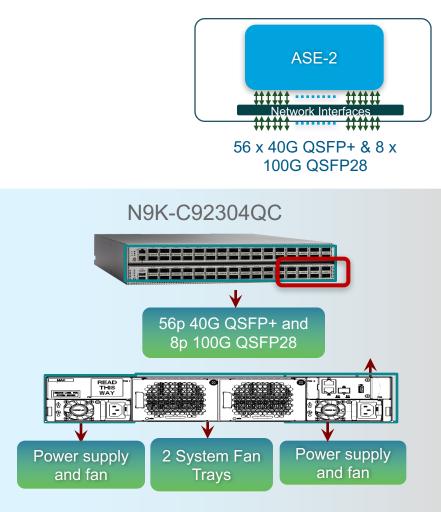


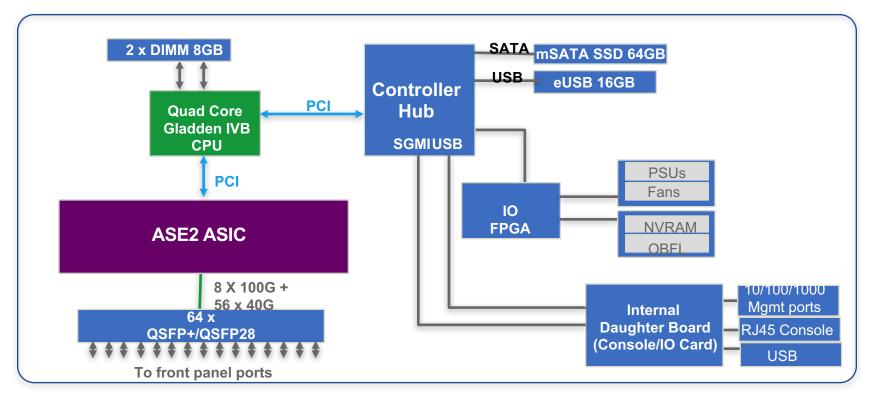
* (QSA in a future SW release)


Nexus 9272Q ASE2 Based


- ASIC: ASE2
- 4-core CPU (Intel Ivy Bridge Gladden 4 core at 1.8 GHz)
- 16GB DRAM + 64GB SSD
- 2MB NVRAM
- Two Power supply (1200W) 1 + 1 redundant
 - Typical Power Usage 310 W
 - Maximum Power Usage 1050 W
- Two Fans 3 + 1 redundant
- 36 x 40/100G ports
- 144 10/25G ports (when all ports in breakout mode

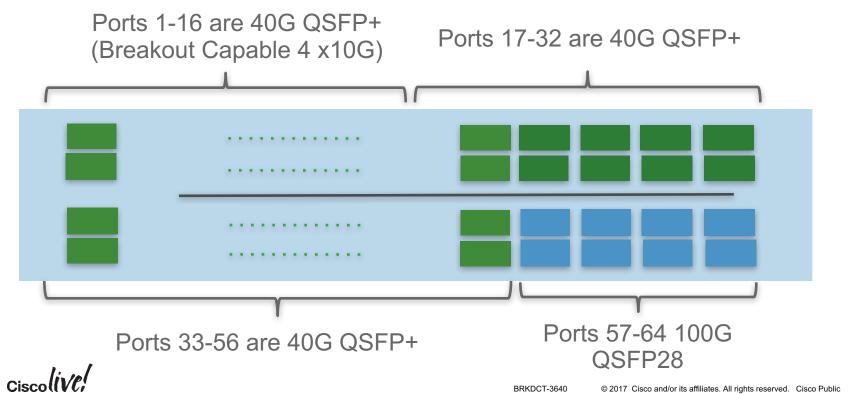
Ciscolive!


Nexus 9272Q Architecture



Nexus 92304QC ASE2 Based

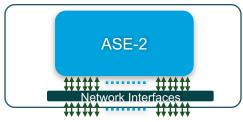
- ASIC: ASE2
- 4-core CPU (Intel Ivy Bridge Gladden 4 core at 1.8 GHz)
- 16GB DRAM + 64GB SSD
- 2MB NVRAM
- Two Power supply (1200W) 1 + 1 redundant
 - Typical Power Usage 305 W
 - Maximum Power Usage 720 W
- Two Fans 3 + 1 redundant
- 56 x 40 Gbps + 8 x 100 Gbps



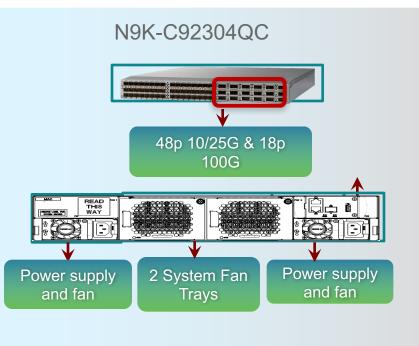
Nexus 92304 Architecture

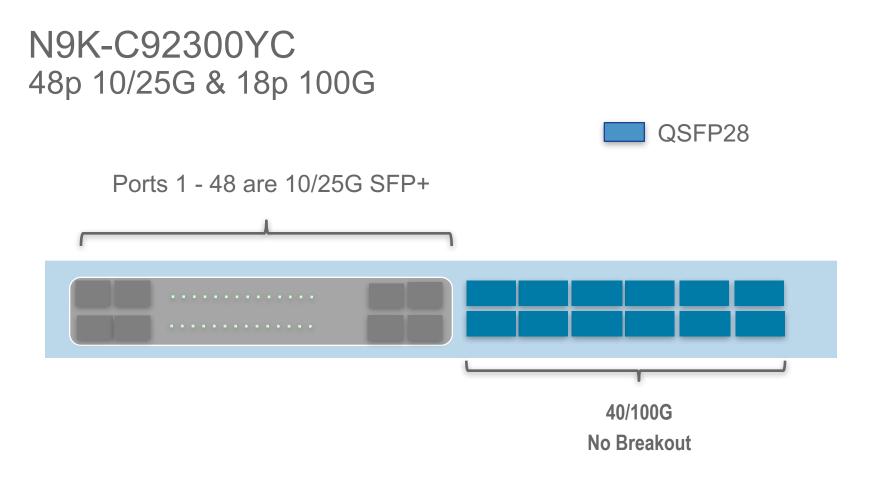
Ciscolive!

Nexus 92304QC Port Configuration 2RU 56p 40G Fibre + 8p 40G/00G



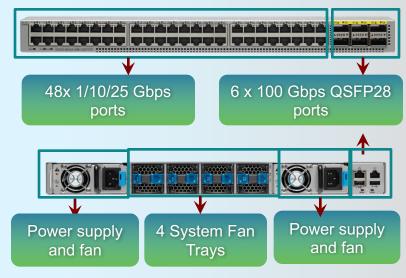
QSFP28 QSFP+


N9K-C92300YC ASE2 Based


- ASIC: ASE2
- 2-core CPU (Uses Intel Broadwell CPU)
- 16GB DRAM + 64GB SSD
- 2MB NVRAM
- Two Power supply (1200W) 1 + 1 redundant
- Two Fans 3 + 1 redundant
- 10/25G access and 100G uplink in a compact form factor
- 12p 100G for 1:1 subscription and additional 6p 100G for peer links

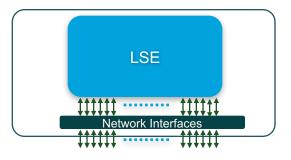
48p 10/25G & 18p 100G

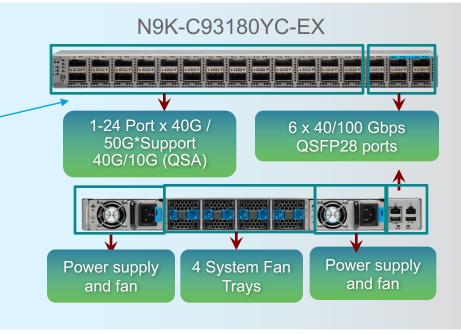
Ciscolive,


Nexus 93180YC-EX Series LSE Based

- ASIC: LSE
- 2-core CPU (Intel Ivy Bridge Gladden)
- 16GB DRAM + 64GB SSD
- 2MB NVRAM
- Two Power supply (650W) 1 + 1 redundant
- Power consumption 248 W
- Four Fans 3 + 1 redundant
- Support both NX-OS mode and ACI mode (ACI leaf)
- Flow Cache

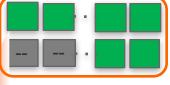
Ciscolive!


```
LSE
```


N9K-C93180YC-EX

Cisco Nexus 93180LC-EX Switch LSE Based

- ASIC: LSE
- 2-core CPU (Uses Intel Broadwell CPU)
- 1RU 32-Port (24p 40/50G, 6p 100G) QSFP Switch
- Support both NX-OS mode and ACI mode (ACI leaf)
- Flow Cache



Nexus 93180LC-EX Port Configuration

Port configuration supported:

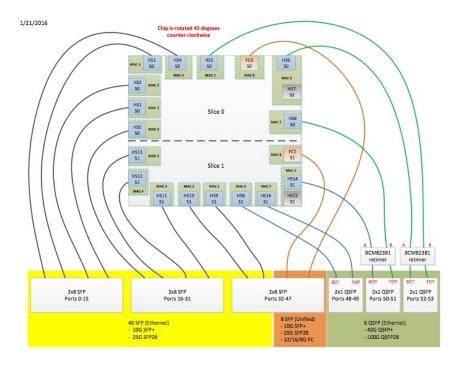
- Ports 1,3,5...27, 29, 30, 31, 32 are 100G capable (ports 2, 4, ... 28 are shut down)
- All active ports are breakout capable: 4x 10G, 4x25G

28p 40/50G & 4p 40/100G (40G Leaf)

Port configuration supported:

- Ports 1 28 support 40/50G, ports 29 32 support 100G
- Ports 1, 3, 5...27, 29, 30, 31, 32 are breakout capable. (If breakout is enabled the port below is shut down – except for ports 29 – 32)

Note: Please check software roadmap for supported configs at FCS.


- In ACI mode 24p 40G and 6p 100G is supported at FCS
- In NX-OS mode 28p 40G and 4p 100G is supported at FCS. (Also supports 32p 40G)

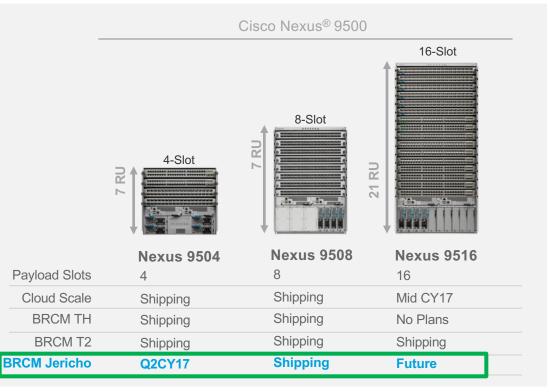
Support for different port templates (reboot required)

- 28p 40/50G + 4p 40/100G
- 24p 40/50G + 6p 40/100G
- ...
- 18p 40/100G

Nexus 93180YC-EX Series LSE Based

- Does it help to wire different ports to different 'slices'
 - NO
 - Unlike a line card that has power supply, connectors, ..., a slice is more like a CPU core
 - Plan for device redunandcy
- That said you like to know so ...

N9K-2nd-Gen#show hardware internal tah ?



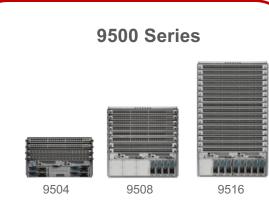
Agenda

- What's New
 - 2nd Generation Nexus 9000
 - Moore's Law and 25G SerDes
 - The new building blocks (ASE-2, ASE-3, LSE)
- Next Generation Capabilities
 - Forwarding, QoS, Telemetry
- Design Impacts of 25G, 50G and 100G
- Nexus 9000 Switch Platforms
 - Nexus 9200/9300 (Fixed)
 - Nexus 9500 (Modular)

Cisco (iVe;

Cisco Nexus 9500 Platform Switches Density in DC Optimised Footprint

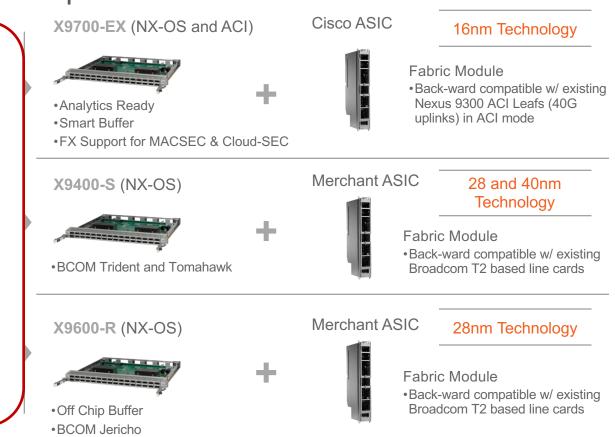
Common Components Chassis, Supervisor, System Controller, Power Supply, Fan Tray


Deployment Options Choice of ACI and NX-OS, Choice of BRCM and Cisco ASIC

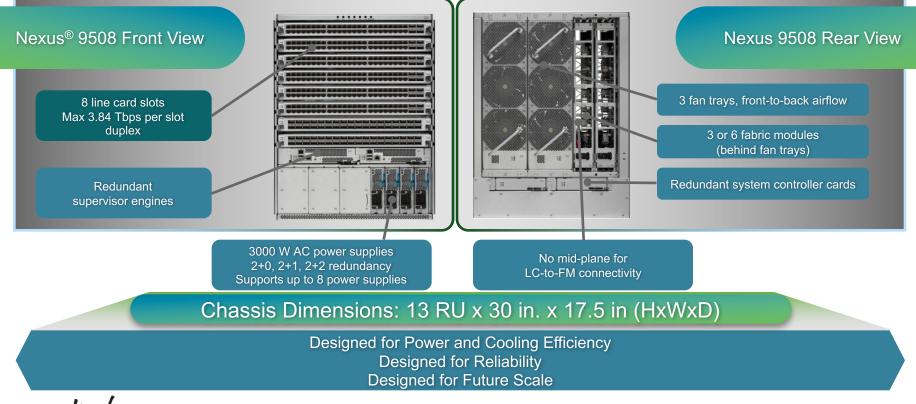
Multi-Generation Investment Protection:

No Mid-plane, Power Supply Headroom for 100/400G and Line rate encryption

Ciscolive!


Nexus 9500 – Modular 1/10/25/40/50/100G Capable

Existing 4-, 8-, 16- slot chassis No mid-plane to update


Power and cooling within existing shipping system profile

Existing shipping Power Supply, Supervisor and System Controllers

Ciscolive

Nexus 9500 Platform Architecture

Nexus 9500 – Supervisors

SUP-A+ Q3CY17

4-core/**8-Thread** 1.8-GHz x86 **Broadwell** 16GB of RAM 64GB SSD

SUP-B

SUP-A

4-core/4-Thread

16GB of RAM 64GB SSD

6-core12-Thread 2.2-GHz x86 IVY Bridge 24GB of RAM 256GB SSD

1.8-GHz x86 Sandy Bridge

SUP-B+ Q3CY17

6-core/12-Thread 1.9-GHz x86 **Broadwell 32GB** of RAM 256GB SSD

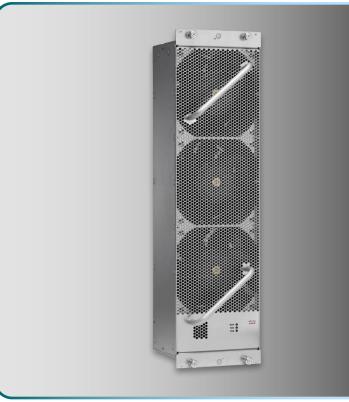
Intel CPU Generations

Nexus 9500 Platform Architecture

System Controller Module

- Redundant half-width system controller
- Offloads supervisor from device management tasks
 - Increased system resiliency
 - Increased scale
- · Performance- and scale-focused
 - □ Dual core ARM processor, 1.3 GHz
- Central point-of-chassis control
- Ethernet Out of Band Channel (EOBC) switch:
 - 1 Gbps switch for intra-node control plane communication (device management)
- Ethernet Protocol Channel (EPC) switch:
 - 1 Gbps switch for intra-node data plane communication (protocol packets)
- Power supplies through system management bus (SMB)
- Fan trays

Nexus 9500 Platform Architecture Energy Efficient Power Supply Options



For Nexus 9504, 9508 and 9516 Online Insertion & Removal Capable

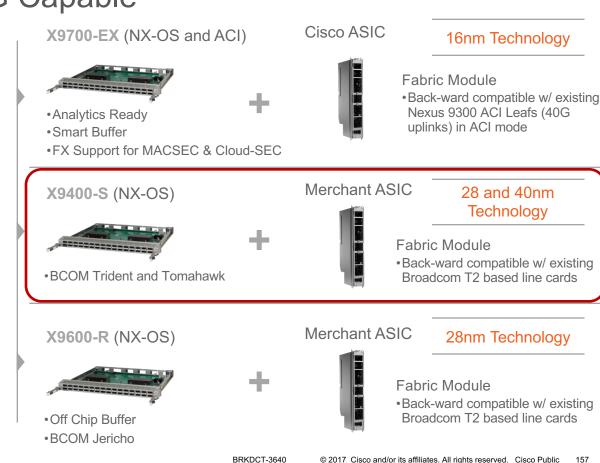
*Picture not shown

Nexus 9500 Platform Architecture Fan Tray

- 3 fan trays
 - 3 dual fans per tray
 - Dynamic speed control driven by temperature sensors
 - Straight airflow across line cards and fabric modules
 - If one fan tray is removed, the other two fan trays will speed up 100% to compensate for the loss of cooling power
- N+1 Redundancy per tray

Nexus 9500 – Modular 1/10/25/40/50/100G Capable

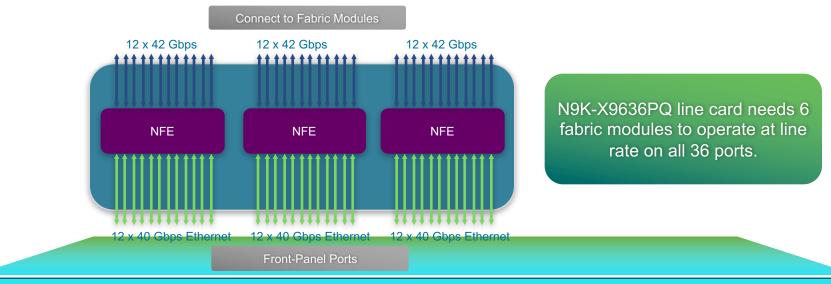
9500 Series



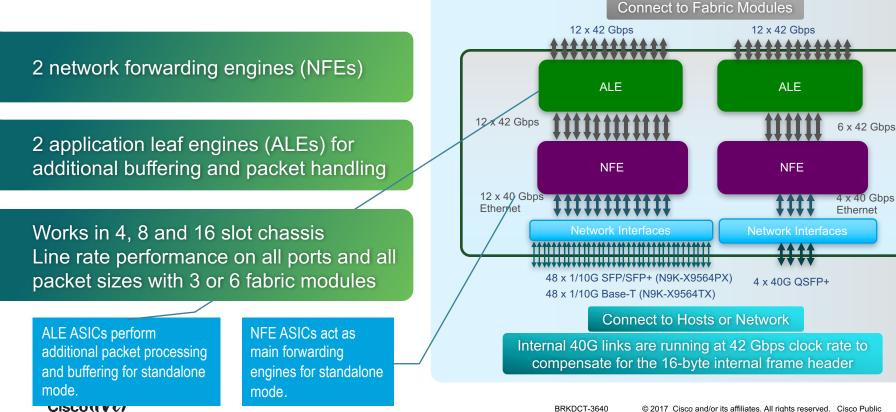
Existing 4-, 8-, 16- slot chassis No mid-plane to update

Power and cooling within existing shipping system profile

Existing shipping Power Supply, Supervisor and System Controllers



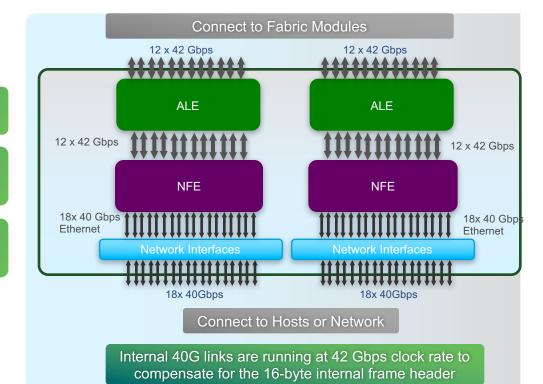
Nexus 9400, 9500, 9600 Series Line Cards Merchant & Merchant +


94xx Series	95xx Series	9600 Series
100G X9432C-S: 32p 40/100G QSFP X9408PC-CFP2: 8p 100G CFP2	40G X9536PQ: 36p 40G QSFP+ (24p linerate)	40G X9636PQ: 36p 40G QSFP+
40G X9432PQ: 32p 40G QSFP+	10G X9564PX: 48p 10G SFP+ & 4p 40G	
10G X9464PX: 48p 10G SFP+ & 4p 40G X9464TX: 48p 10GT & 4p 40G	40G X9564TX: 48p 10GT & 4p 40G	
BROADCOM Trident T2	ASE	вподреом Trident T2
scolive!	BRKDCT-3640 © 2	2017 Cisco and/or its affiliates. All rights reserved. Cisco Public

Nexus 9500 N9K-X9600 Series Line Cards N9K-X9636PQ

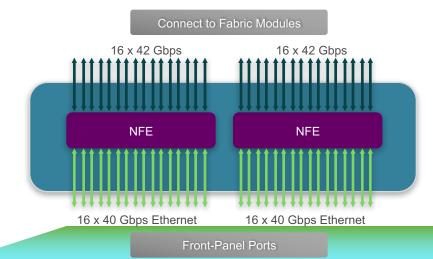
- 3 network forwarding engines (NFE)
- Each NFE runs in full-line-rate mode, providing 12 x 40 Gbps links to the front panel and 12 x 40 Gbps internal links to the fabric modules

Nexus 9500 N9K-X9500 Series Line Cards N9K-X9564PX & N9K-X9564TX



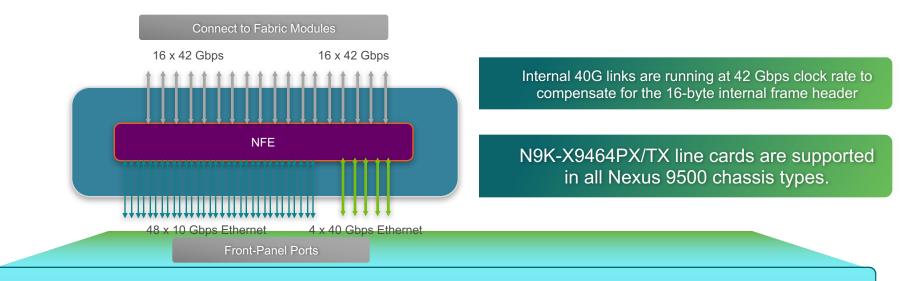
Nexus 9500 N9K-X9500 Series Line Cards N9K-X9536PQ Line Card

2 network forwarding engines (NFEs)


2 application leaf engines (ALEs) for additional buffering and packet handling

Need 3 fabric modules, can work with 6

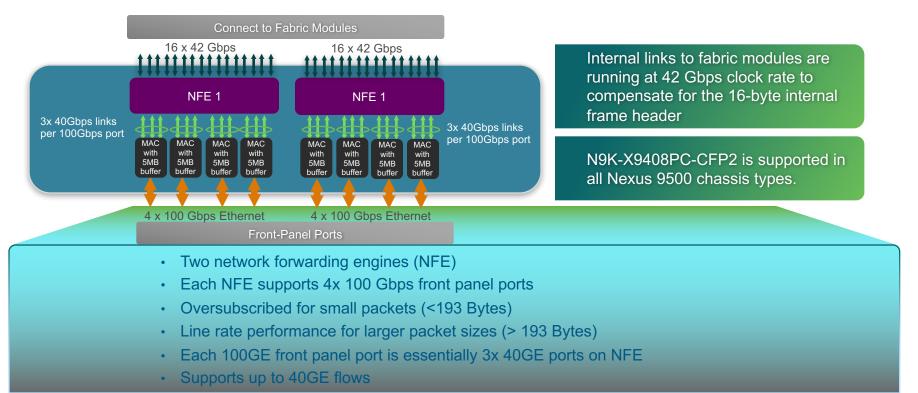
Nexus 9500 N9K-X9400 Series Line Cards N9K-X9432PQ



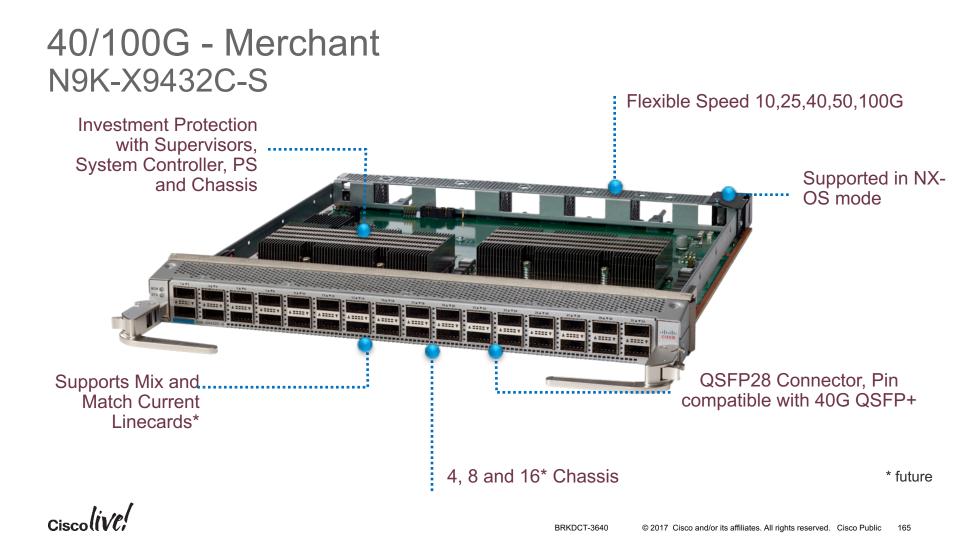
Internal 40G links are running at 42 Gbps clock rate to compensate for the 16-byte internal frame header

N9K-X9432PQ is supported in all Nexus 9500 chassis types.

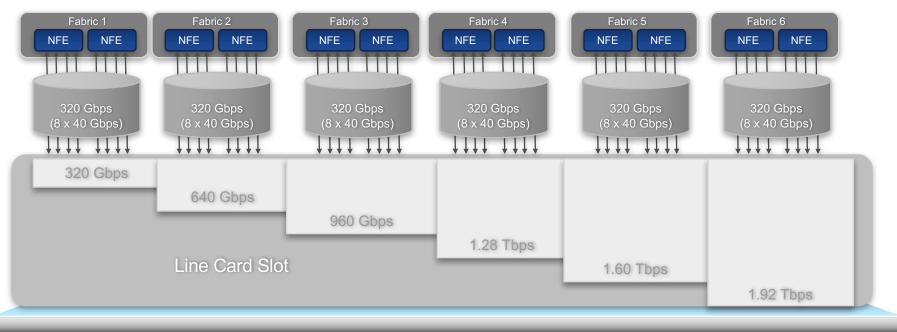
- Two network forwarding engines (NFE)
- Each NFE supports 16x 40 Gbps front panel ports
- Oversubscribed for small packets (<193 Bytes)
- Line rate performance for larger packet sizes (> 193 Bytes)


Nexus 9500 N9K-X9400 Series Line Cards N9K-X9464PX and N9K-X9464TX

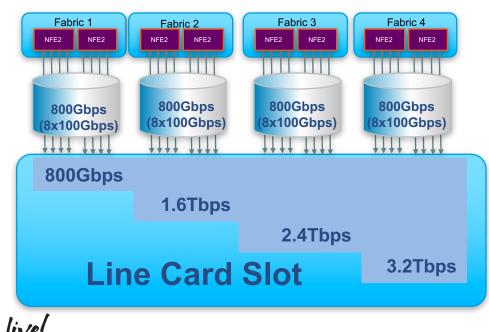
- One NFE supports all 48x 1/10 Gbps and 4x 40 Gbps front panel ports
- Oversubscribed for smaller packet sizes (<193 Bytes)
- Line rate performance for larger packet sizes (> 193 Bytes)


Cisco((VCi

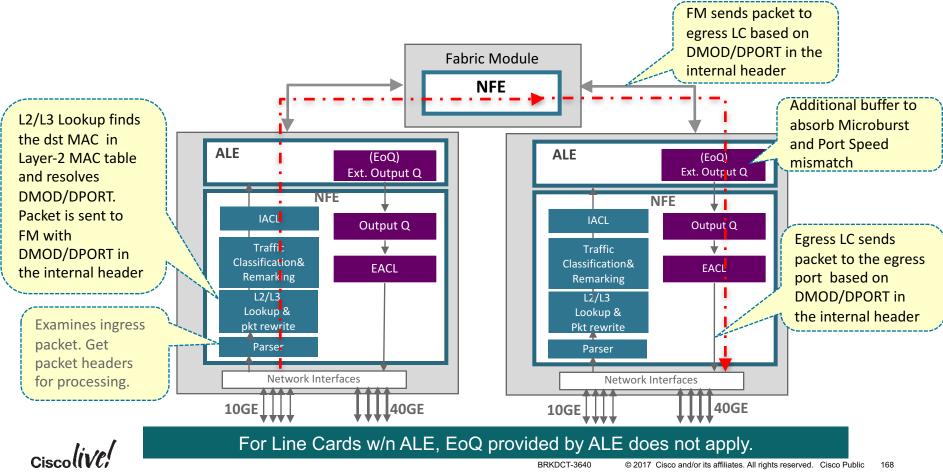
Nexus 9500 N9K-X9400 Series Line Cards N9K-X9408PC-CFP2

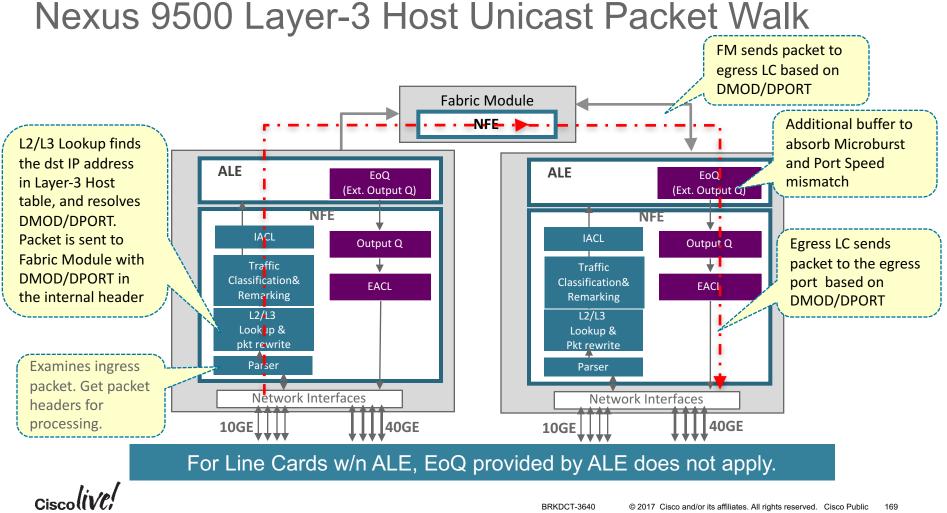

The 100GE MAC ASIC per front panel port has additional 5MB buffer

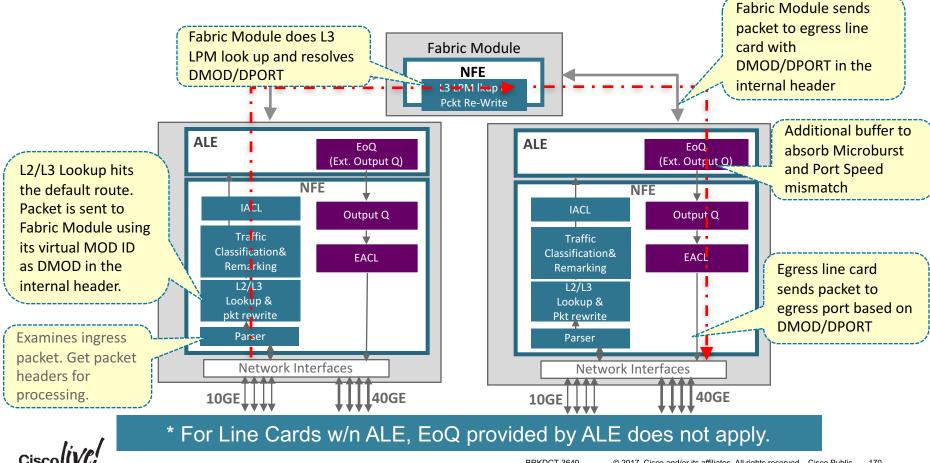
BRKDCT-3640 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 164

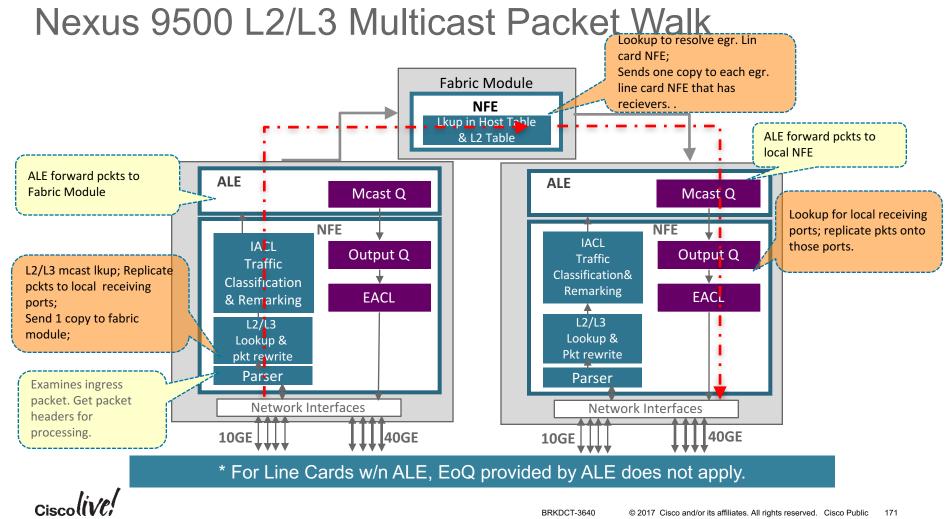

First Gen Nexus 9500 Series Switch Fabric Module Data Plane Scaling (Using Nexus 9508 as an example)

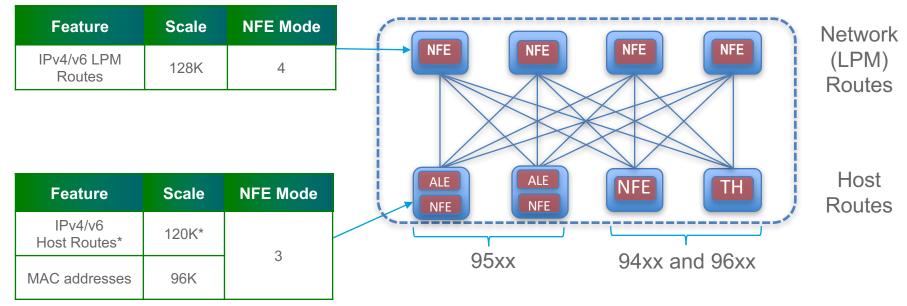
- Each fabric module can provide up to 320 Gbps to each line card slot
- With 6 fabric modules, each lie card slot can have up to 1.92 Tbps forwarding bandwidth in each direction.


Second Gen Nexus 9500 Series Switch Fabric Module Data Plane Scaling (Using Nexus 9508 as an example)

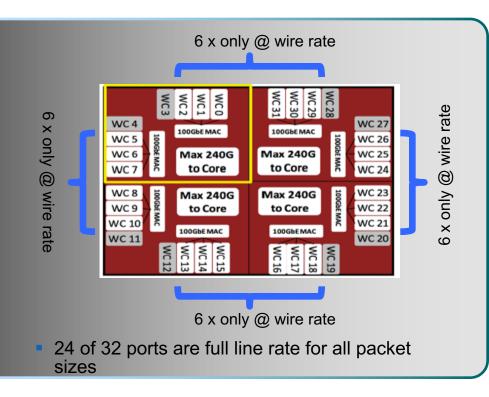

• With 4 Fabric Modules, each I/O module slot can have up to 3.2 Tbps forwarding bandwidth.


- N9K-C9504-FM-E
 - One NFE2 ASIC per FM
 - 32x100G ports per FM
- N9K-C9508-FM-E
 - Two NFE2 ASICs per FM
 - 64x100G ports per FM
- N9K-C9516-FM-E
 - Four NFE2 ASICs per FM
 - 128x100G ports per FM


Nexus 9500 Layer-2 Unicast Packet Walk



Nexus 9500 Layer-3 LPM Unicast Packet Walk


Modular Nexus 9500 CLOS Based Hierarchical Forwarding

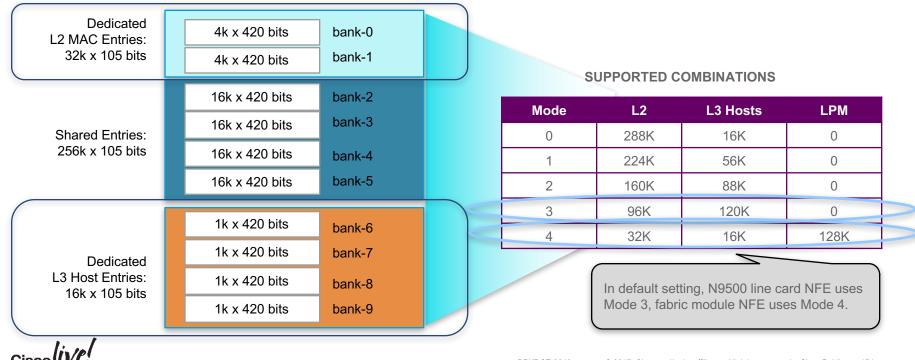
In standalone NX-OS Mode Line Card Forwarding is performed in the NFE (Trident 2)

NFE Forwarding Capacity

Two forwarding Modes on NFE

- Full Late-Rate Mode (FLM)
- Over-subscribed Mode (OSM)

Full Late-Rate Mode (FLM):


- Only 24 40GE ports are used
- Every port is full line-rate for all packet sizes

Over-subscribed Mode (OSM)

- All 32 40GE ports are used
- Every ports is line-rate for packet sizes > 193 Bytes

Nexus 9500 Hierarchical Forwarding NFE Unified Forwarding Table

- NFE has a 16K traditional LPM TCAM table.
- Additionally NFE has the following Unified Forwarding Table for ALPM (Algorithm LPM) Mode

Nexus 9500 Forwarding Programming Mode

	MAC Table		IPv4/IPv6 Host Table		IPv4/IPv6 LPM Route Table		Multicast Route Table	
	Location	NFE Mode	Location	NFE Mode	Location	NFE Mode	Location	NFE Mode
Hierarchical routing mode (default)	LC	3	LC	3	FM	4	LC+FM	3
Hierarchical 64-bit ALPM mode	LC	3	LC	3	FM	4	LC+FM	3
	10	2	IPv4 on FM	3	IPv4 on FM	3		
Hierarchical Max-host routing mode		LC 2	IPv6 on LC	2	IPv6 on LC	2	LC+FM	
Non-hierarchical routing mode	LC	3	LC	3	LC	3	LC	3
Non-hierarchical routing Max-L3 mode	LC	4	LC	4	LC	4	LC	4

Forwarding Programming Mode	Configuration Command	
Default Hierarchical routing mode	Default	
Hierarchical 64-bit ALPM mode	9508(config)# system routing hierarchical max-mode 13 64b-alpm	
Hierarchical Max-host routing mode	9508(config)# system routing max-mode host	
Non-hierarchical routing mode	9508(config)# system routing non-hierarchical	
Non-hierarchical routing Max-L3 mode	9508(config)# system routing non-hierarchical max-mode I3	

CLI to Show Forwarding Programming Mode

9508# sh system routing mode

Configured System Routing Mode: Non-Hierarchical (Default) Applied System Routing Mode: Hierarchical (Default) Configured SVI post-routed unknown-unicast hardware flood mode: enabled US-DUR-LC01-9508#

9508# show forwarding route summary module 1	9508# show forwarding route summary module 26
Module Type : Line-Card Module Mode : Mode-3 Module Route Download-type : Host only (IPv4+IPv6) (1)	Module Type Module Mode Module Route Download-type (IPv4+IPv6) (2) EDef module for table default (here
IPv4 routes for table default/base '**' denotes routes NOT programmed in hardware	IPv4 routes for table default/base '**' denotes routes NOT programmed in hardware due to hierarchical routing
due to hierarchical routing Cumulative route updates: 1005038 Cumulative route inserts: 1005005 Cumulative route deletes: 143	Cumulative route updates: 1005043 Cumulative route inserts: 1004930 Cumulative route deletes: 54 Total number of routes: 8 Total number of paths : 8
Total number of routes: 24 Total number of paths : 25 Number of routes per mask-length:	Number of routes per mask-length: /8 : 1 /30 : 5 US-DUR-LC01-9508#
/32 : 24	

Nexus 9500 Merchant/Merchant+

BRCM T2

Fabric Module

- N9K-C9504-FM
- N9K-C9508-FM
- N9K-C9516-FM

Line Cards

- N9K-X9736PQ
- N9K-X9636PQ
- N9K-X9536PQ
- N9K-X9564PX
- N9K-X9564TX
- N9K-X9408PC-CPF2
- N9K-X9432PQ
- N9K-X9464PX
- N9K-X9464TX

Cisco{[]

BRCM Tomahawk

Fabric Module

Line Card

- N9K-C9504-FM-S
- N9K-C9508-FM-S

N9K-X9432C-S

• N9K-C9508-FM-R

Fabric Module

BRCM Jericho

Line Cards

- N9K-X9636C-R
- N9K-X9636Q-R

Cisco CloudScale

Fabric Module

- N9K-C9504-FM-E
- N9K-C9508-FM-E

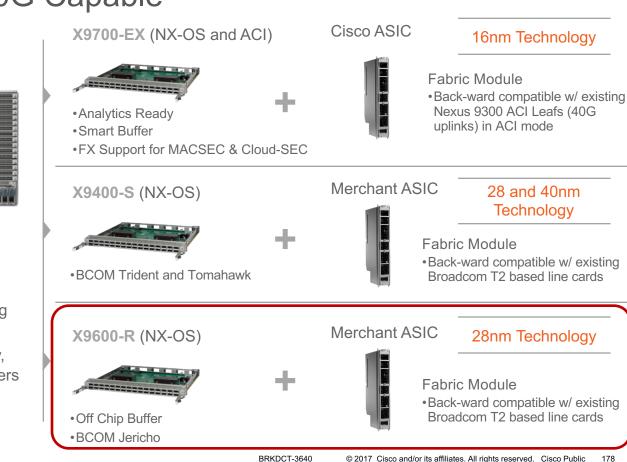
Line Cards

- N9K-X9732C-EX
- N9K-X97160YC-EX

Note: No mix match of different types of fabric modules in same chassis

Nexus 9500 – Modular 1/10/25/40/50/100G Capable

9500 Series



Existing 4-, 8-, 16- slot chassis No mid-plane to update

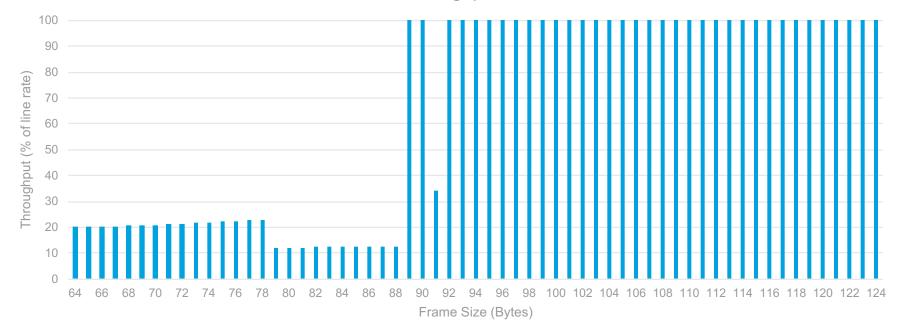
Power and cooling within existing shipping system profile

Existing shipping Power Supply, Supervisor and System Controllers

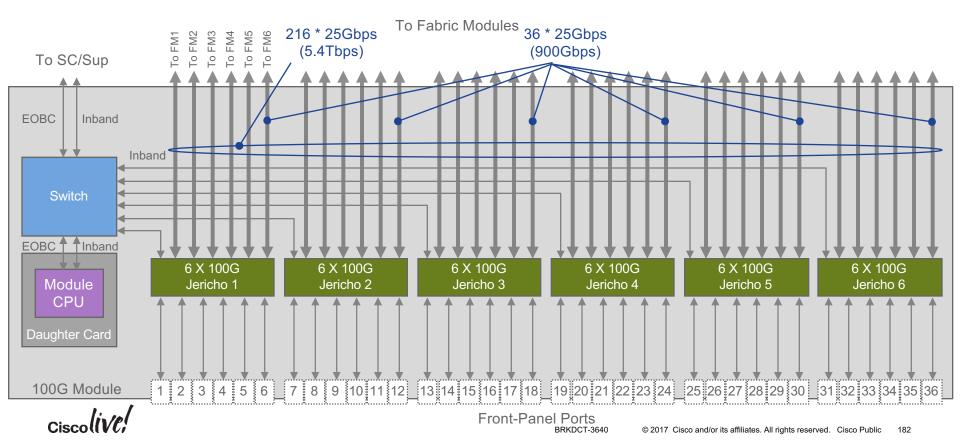
Cisco Nexus 9636x-R Line Cards Line Cards Comparison

	. <u>(</u>	()
	N9K-X9636C-R	N9K-X9636Q-R
Maximum Number of 100 Gb Ports QSFP28	36	
Maximum Number of 40 Gb Ports QSFP+	36	36
Line rate ports @ 64 bytes packets	24 ports @100 Gbps or 36 ports @ 40 Gbps	36 ports @ 40 Gbps
Line rate ports @ > 64 bytes packets	36 ports @100 Gbps or 36 ports @ 40 Gbps	36 ports @ 40 Gbps
Total Module Capacity	2.4 Tbps @ 64 bytes 3.6 Tbps @ > 92 bytes	1.4 Tbps @ 64 bytes 1.4 Tbps @ > 64 bytes
Ports per Jericho	6	12
Minimum Number of Fabric Modules for Full Line- Rate Performance	5	4
N9K-SUP-B Required	Yes	Yes

Cisco


Cisco Nexus 9636C-R Line Cards N9K-X9636C-R

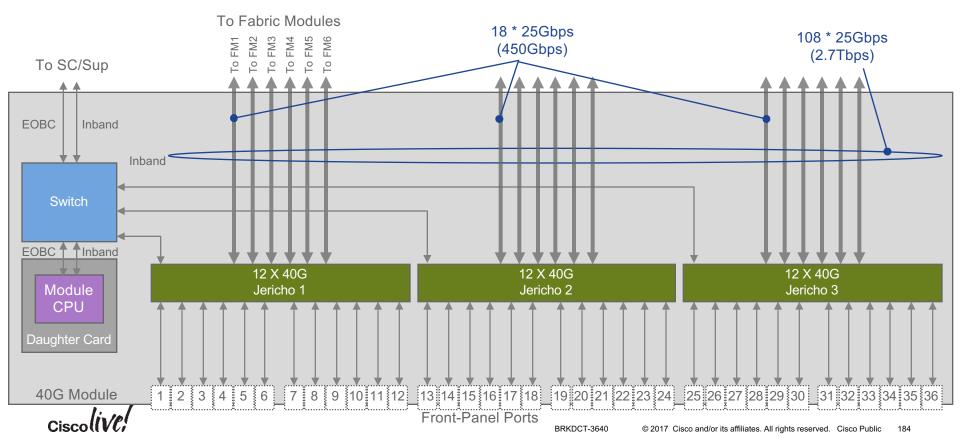
- 36 x 100G QSFP28 ports
 - Can also operate as 40G ports with 40G QSFP
- Six forwarding ASICs, one per 6 front-panel 100G ports (4GB GDDR5 DRAM-based buffer per ASIC)
- Up to 36 line rate ports at larger packet sizes (higher than 92B)
 - 3.6Tbps total module capacity
- 24 line rate 100G ports at 64 bytes
 - 4 ports per Jericho (total bandwidth 480Gbps per Jericho)
- 8-core 2.4GHz module x64 module CPU with 16GB DDR3 DRAM
- Requires N9K-SUP-B and N9K-9508-FM-R


Cisco Nexus 9636C-R Line Cards - Throughput

Throughput

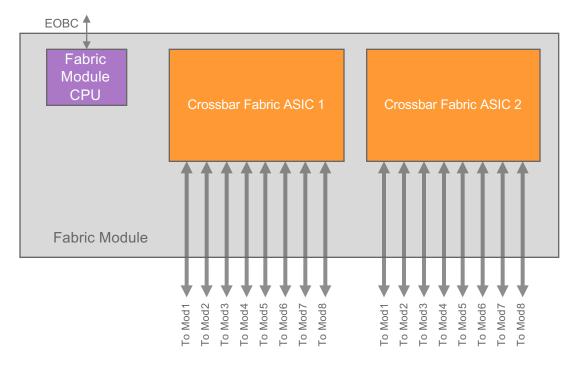
Ciscolive!

Cisco Nexus 9636C-R Line Card N9K-X9636C-R Module Architecture



Cisco Nexus 9636Q-R Line Cards N9K-X9636Q-R

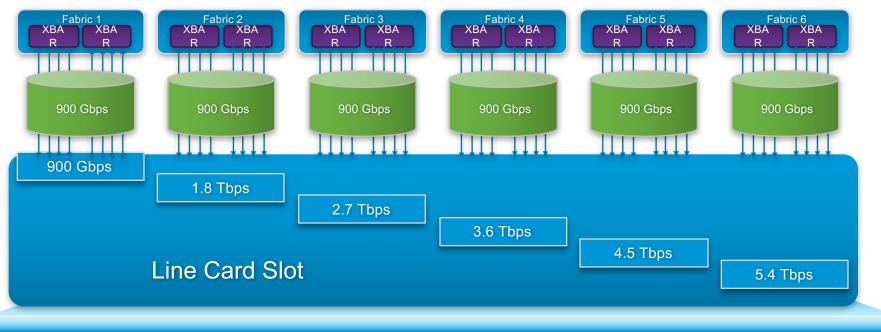
- 36 x 40G QSFP+ ports
- Three forwarding ASICs, one per 12 front-panel 40G ports
- 4GB GDDR5 DRAM-based buffer per ASIC
- 36 line rate 40G ports at all packet sizes
 - 1.4Tbps total module capacity
- 8-core 2.4GHz module x64 module CPU with 16GB DDR3 DRAM
- Requires N9K-SUP-B and N9K-9508-FM-R


Cisco Nexus 9636Q-R Line Cards N9K-X9636Q-R(Potenza-40) Module Archicture

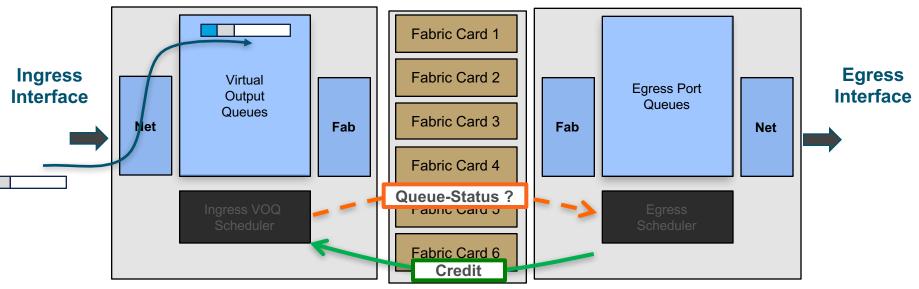
Nexus 9508-FM-R Fabric Module

- Up to 6 fabric modules per system
- Two crossbar ASICs per fabric module
- Provides cell-based fabric interconnect between I/O modules
 - Variable length cells (64..256 bytes)
- Each fabric module provides 900G bandwidth per I/O module slot
- 900Gbps * 6 fabrics = 5.4Tbps/slot
- 8-slot chassis: 5.4Tbps/slot * 8 I/O modules = 43.2Tbps total system bandwidth
- 4-core ARM CPU with 4GB DDR3 DRAM

Nexus 9508-FM-R 8-Slot Fabric Module Architecture

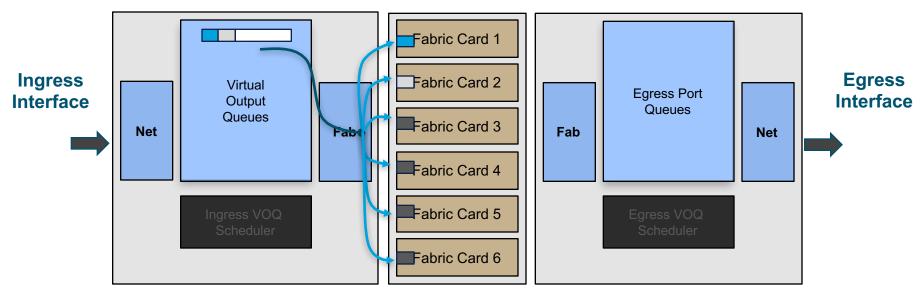


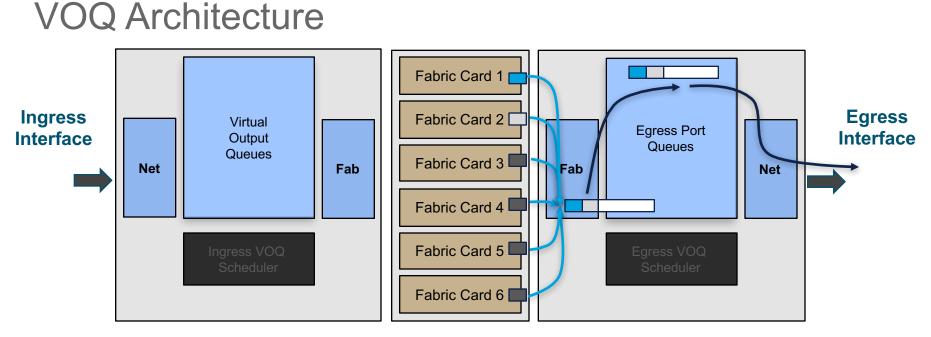
To I/O Modules


Ciscolive,

Nexus 9508-FM-R Fabric Module Data Plane Scaling For 8-Slot Chassis

- Each fabric module for the 8-slot chassis can provide up to 900 Gbps to each I/O module slot
- With 6 fabric modules, each I/O module slot can have up to 5.4Tbps forwarding bandwidth in each direction


VOQ Architecture


- Packet is received on ingress interface, classified, and stored in internal buffer
- Ingress VOQ scheduler polls Egress scheduler (maintaining a local VOQ DB)
- · Egress answers with a credit-message

Ciscolive!

VOQ Architecture

- · Packet is split in cells and load balanced among the fabric cards
- · Cells are transported to the egress line card

- · Cells are collected and packet re-assembled
- Packet is stored in the port queue
- Finally packet is transmitted through the egress interface

Ciscolive,

Forwarding Tables Q4CY16 Supported

Forwarding Table	System Scale
IPv4 prefixes	192K (shared with v6 prefixes/hosts)
IPv4 ARP/host routes (/32)	750K (shared with MAC)
IPv6 prefixes/host routes	62K (shared with v4 prefixes)
IPv4 multicast routes	32K (shared with ACL)
Adjacency table (rewrite table)	80K directly connected / system
IPv4/IPv6 ACL entries	48K / system (spread over multiple instances) (max IPv4/IPv6 per instance: 48K/12K)
MAC table	64K at FCS (shared with IPv4 host routes)

Nexus 9500 Merchant Off Chip Buffer

BRCM T2

Fabric Module

- N9K-C9504-FM
- N9K-C9508-FM
- N9K-C9516-FM

Line Cards

- N9K-X9736PQ
- N9K-X9636PQ
- N9K-X9536PQ
- N9K-X9564PX
- N9K-X9564TX
- N9K-X9408PC-CPF2
- N9K-X9432PQ
- N9K-X9464PX
- N9K-X9464TX

Ciscolive!

Note: No mix match of different types of fabric modules in same chassis

BRCM Tomahawk

Fabric Module

Line Card

- N9K-C9504-FM-S
- N9K-C9508-FM-S

N9K-X9432C-S

Line Cards

•

• N9K-X9636C-R

Fabric Module

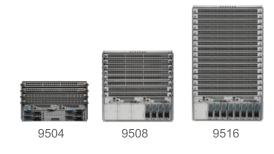
BRCM Jericho

N9K-C9508-FM-R

• N9K-X9636Q-R

Cisco CloudScale

Fabric Module


- N9K-C9504-FM-E
- N9K-C9508-FM-E

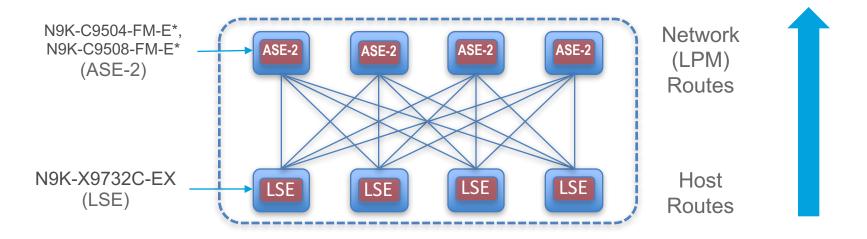
Line Cards

- N9K-X9732C-EX
- N9K-X97160YC-EX

Nexus 9500 – Modular 1/10/25/40/50/100G Capable

9500 Series

Existing 4-, 8-, 16- slot chassis No mid-plane to update


Power and cooling within existing shipping system profile

Existing shipping Power Supply, Supervisor and System Controllers

Modular Nexus 9500 Generation 2 Line Cards and Fabric Modules

1. IPv4: 1M LPM+ host

Ciscolivel

2. IPv4: 750K LPM + host AND IPv6 /64: 256K

Summarisation and Balance of Host and Network Routes Shift

BRKDCT-3640 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 194

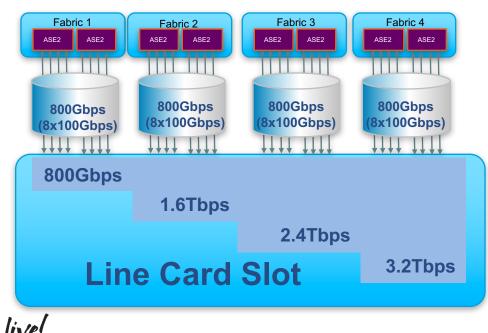
Nexus 9500 Forwarding Programming Mode Generation 2 Line Cards and FM's

Default template

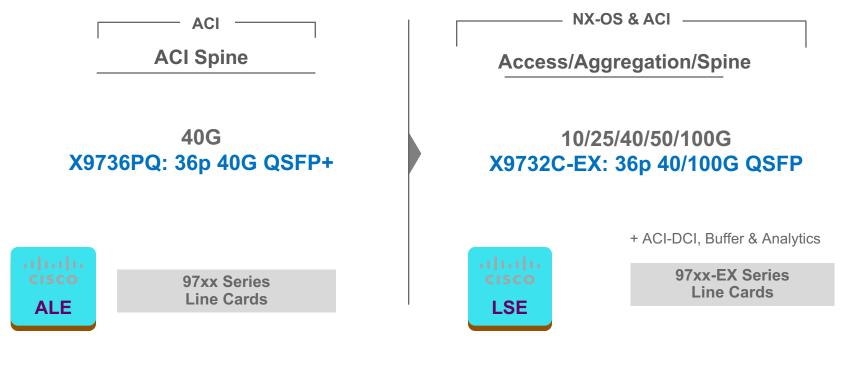
Table Type	IPv4 Hosts	IPv4 LPM	IPv6 Hosts	IPv6 /64 LPM	MAC	Multicast	Next_Hop	IPv4 MPLS
Scale	768K*	768K*	16K	256K	96K	32K	64K	16K
Location	LC	LC	FM	FM	LC	LC and FM	LC + FM	LC

* shared entry. Non-/64 IPv6 routes in separate TCAM

High Host route and LPM Scale with Multicast


Table Type	IPv4 Hosts	IPv4 LPM	IPv6 Hosts	IPv6 /64 LPM	MAC	Multicast	Next_hop	IPv4 MPLS
Scale	1M*	1M*	16K	256K	16K	32K	64K	16K
Location	LC	LC	FM	FM	LC	LC + FM	LC + FM	LC

* shared entry. Non-/64 IPv6 routes in separate TCAM table


Second Gen Nexus 9500 Series Switch Fabric Module Data Plane Scaling (Using Nexus 9508 as an example)

• With 4 Fabric Modules, each I/O module slot can have up to 3.2 Tbps forwarding bandwidth.

- N9K-C9504-FM-E
 - One ASE2 ASIC per FM
 - 32x100G ports per FM
- N9K-C9508-FM-E
 - Two ASE2 ASICs per FM
 - 64x100G ports per FM
- N9K-C9516-FM-E
 - Four ASE2 ASICs per FM
 - 128x100G ports per FM

Nexus 9500 Series Line Cards – Cisco ASICs Deployment Options: Aggregation, Spine

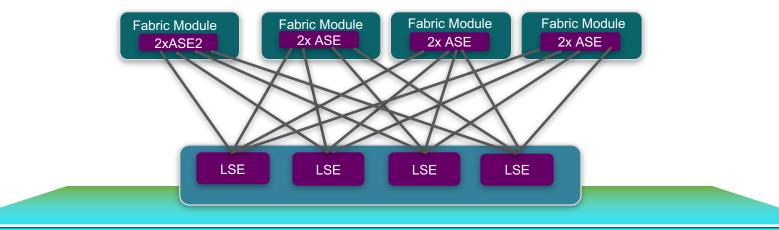
Nexus 9500 N9K-X9732C-EX LSE Based Supported in ACI

and NX-OS mode

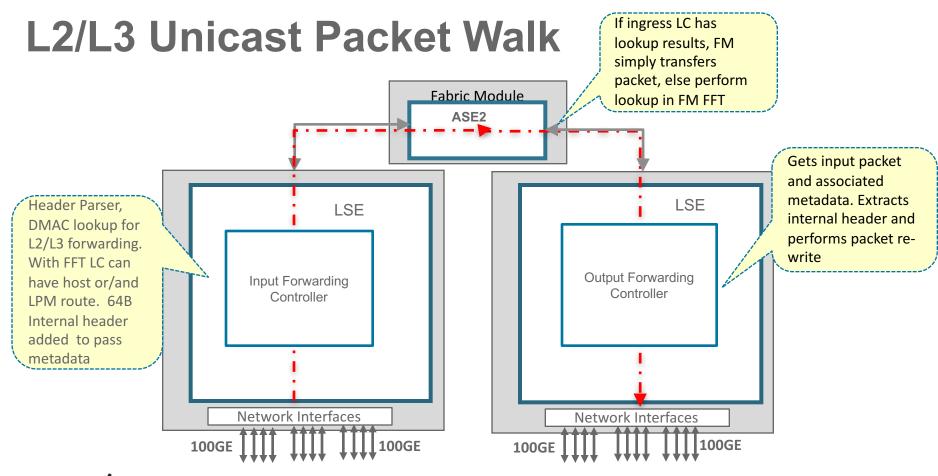
N9K-X9732C-EX line card needs 4 fabric modules to operate at full line rate on all 32 ports. Line Rate for all packet size.

Support Breakout (independently) on all ports

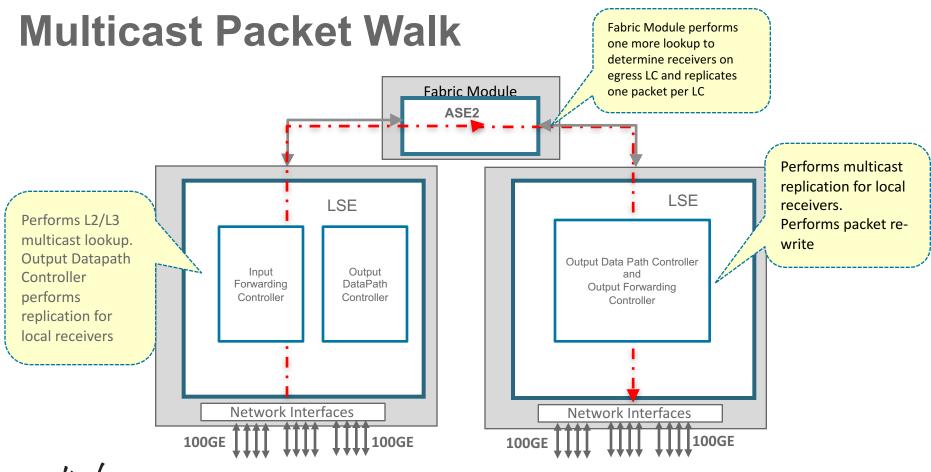
Investment Protection


System Controller, PS and Chassis

with Supervisors,


Ports Modes: 4x10G,4x25G,40G,2x50G,100G QSFP28 Connector, Pin compatible with 40G QSFP+

Nexus 9500 N9K-X9732C-EX Line Card


N9K-X9732C-EX Fabric Connectivity with N9K-C9508-FM-E Fabric Module

- Needs 4 fabric modules (fabric module slot 2, 3, 4 and 6)
- Each LSE provides 8 x 100 Gbps front-panel ports and 8 x 100 Gbps internal links to the fabric modules
- Line rate for packet sizes

Ciscolive,

Ciscolive!

Nexus 9500 Fabric Modules

BRCM T2

Fabric Module

- N9K-C9504-FM
- N9K-C9508-FM
- N9K-C9516-FM

Line Cards

- N9K-X9736PQ
- N9K-X9636PQ
- N9K-X9536PQ
- N9K-X9564PX
- N9K-X9564TX
- N9K-X9408PC-CPF2
- N9K-X9432PQ
- N9K-X9464PX
- N9K-X9464TX

Ciscolive!

BRCM Tomahawk

Fabric Module

- N9K-C9504-FM-S
- N9K-C9508-FM-S

BRCM Jericho

Fabric Module

• N9K-C9508-FM-R

Line Cards

- N9K-X9636C-R
- N9K-X9636Q-R

Cisco CloudScale

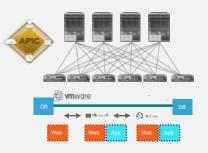
Fabric Module

- N9K-C9504-FM-E
- N9K-C9508-FM-E

Line Cards

- N9K-X9732C-EX
- N9K-X97160YC-EX

Note: No mix match of different types of fabric modules in same chassis


BRKDCT-3640 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 202

Line Card

• N9K-X9432C-S

Cisco Data Centre Networking Strategy: Providing Choice in Automation and Programmability

Application Centric Infrastructure

Programmable Fabric

Programmable Network

Modern NX-OS with enhanced NX-

APIs

DevOps toolset used for Network Management

(Puppet, Chef, Ansible etc.)

Turnkey integrated solution with security, centralised management, compliance and scale

Automated application centric-policy model with embedded security

Broad and deep ecosystem

VxLAN-BGP EVPN standard-based

3rd party controller support

Cisco Controller for software overlay provisioning and management across N2K-N9K

Nexus 9400 & 9600 (line cards), 9200, 3100, 3200

Nexus 9700EX + 9300EX

CISCOUVUT

BRKDCT-3640 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 203

Q & A

BRKDCT-3640 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 20-

Complete Your Online Session Evaluation

Give us your feedback and receive a **Cisco Live 2017 Cap** by completing the overall event evaluation and 5 session evaluations.

All evaluations can be completed via the Cisco Live Mobile App.

Caps can be collected Friday 10 March at Registration.

Learn online with Cisco Live! Visit us online after the conference for full access to session videos and presentations.

www.CiscoLiveAPAC.com

Thank you

cisco

7-10 March 2017 · Melbourne, Australia